SOIL CONTROLLING FACTORS OF METHANE GAS PRODUCTION FROM FLOODED RICE FIELDS IN PATI DISTRICT, CENTRAL JAVA

P. Setyanto\(^a\), Rosenani, A.B.\(^b\), A.K. Makarim\(^c\), Che Fauziah I.\(^b\), A. Bidin\(^d\), and Suharsih\(^a\)

\(^a\)Research Station for Agricultural Environment Preservation, PO Box 05, Pati 59182, Central Java, Indonesia
\(^b\)Universiti Putra Malaysia, Serdang 43300, Selangor DE, Malaysia
\(^c\)Central Research Institute for Food Crops, Jalan Merdeka 147, Bogor 16111, Indonesia
\(^d\)Malaysian Agricultural Research and Development Institute, Serdang 43300, Selangor DE, Malaysia

ABSTRACT

Atmospheric methane (CH\(_4\)) is recognized as one of the most important greenhouse gases. Methane, with some 15-30 times greater infrared-absorbing capability than CO\(_2\) on a mass basis, may account for 20% of anticipated global warming. Soils are one of the key factors, which play an important role in CH\(_4\) production and emission. However, data on CH\(_4\) emission from different soil types and the characteristics affecting CH\(_4\) production are lacking when compared to data on agronomic practices. This study was conducted to investigate the potential of CH\(_4\) production of selected soils in Java, and determine the limiting factors of CH\(_4\) production. The results showed that addition of 1% glucose to the soils led to an increase in CH\(_4\) production by more than twelve fold compared to no glucose addition. The CH\(_4\) production potential ranged between 3.21 and 112.30 mg CH\(_4\) kg\(^{-1}\) soil. The lowest CH\(_4\) production potential occurred in brown-grayish Grumosol, while the highest was in dark-gray Grumosol. Chemical and physical properties of the soils have great influence on CH\(_4\) production. Stepwise multiple regression analysis of CH\(_4\) production and soil characteristics showed that pH and the contents of Fe\(_2\)O\(_3\), MnO\(_2\), SO\(_4\), and silt in the soil strongly influenced CH\(_4\) production. Results of this study can be used for further development of a model on CH\(_4\) emission from rice fields.

[Keywords: methane, rice fields, soil chemico-physical properties, Central Java]

INTRODUCTION

Methane (CH\(_4\)) is one of the important greenhouse gases in the atmosphere (Dlugokencky \textit{et al.}, 1994). Without the presence of the greenhouse gases, the air temperature of the earth's surface would be 2-3 times lower than the actual temperature we experience now. The increase of CH\(_4\) in the atmosphere contributes to global warming and affects the chemical changes in the atmosphere (Cicerone and Oremland, 1988; GEIA, 1993; Khalil and Shearer, 1993; IPCC, 1996). Rice fields are one of the major CH\(_4\) sources (Cicerone and Shetter, 1981; Sass \textit{et al.}, 1990; Rennenberg \textit{et al.}, 1992; Neue and Roger, 1994; Wassmann \textit{et al.}, 1995; Neue and Sass, 1998; Wassmann \textit{et al.}, 1998). The rice paddy environment, e.g., soil, water, and the rice plant, is actively implicated in CH\(_4\) production, oxidation, and transportation (Seiler \textit{et al.}, 1984; Holzapfel-Pschorn \textit{et al.}, 1985; Schultz and Seiler, 1989; Neue \textit{et al.}, 1997).

Methane production and oxidation in flooded rice soils are regulated by various microorganisms, which are controlled by biological, chemical, and physical factors of the soil environment. The rhizosphere of rice plants will affect both production and oxidation of CH\(_4\). During the growth of rice plants, soil environmental conditions fluctuate due to changes in floodwater level, temperature, root growth, and fertilizer. In such a dynamic system, it is important to understand the factors which control CH\(_4\) emission to the atmosphere. Soils are one of the key factors which play an important role in CH\(_4\) production and emission. However, data on CH\(_4\) emission from different soil types and the characteristics affecting CH\(_4\) production are lacking when compared to data on agronomic practices.

Since the first study of CH\(_4\) emission from a Californian rice field by Cicerone and Shetter (1981), evidence has accumulated showing that climate, organic matter amendment, water regime, rice variety, and fertilizer influence CH\(_4\) emission from rice fields. Research on CH\(_4\) emission in relation to these factors has been conducted extensively in some countries, i.e., the Philippines, China, United States, Japan, India, Thailand, and the Netherlands. However, data on CH\(_4\) fluxes from different soil types and the soil characteristics controlling the production of CH\(_4\) are still lacking. This study is important in terms of developing a model to predict CH\(_4\) emission from rice
fields. Understanding the controlling factors on \(CH_4 \) production would facilitate developing such a model. Therefore, this study was conducted to investigate the potential of \(CH_4 \) production of selected soils in Java and to determine the soil characteristics controlling the emission.

MATERIALS AND METHODS

Laboratory experiment to determine the potential production of \(CH_4 \) from rice field soils was conducted. Eleven types of rice soils were selected from irrigated wetland areas in Pati, Central Java. The soils were collected based on the Indonesian Center for Soil and Agroclimate Research and Development (ICSARD) Soil Maps developed by Soepraptohardjo and Suwardjo (1966). Soil samples were classified based on the FAO Soil Classification. Eleven soil types identified from Pati District are brown Regosol, red Latosol, dark-brown Alluvial, gray-yellowish Alluvial, brown Latosol, gray Hydromorph Association, dark-gray Grumosol, brown-reddish Mediterranean, dark-brown Mediterranean, dark-gray Grumosol and Lithosol Association, and brown-grayish Grumosol.

Soils were randomly collected from 0-20 cm depths soon after rice crops were harvested. The soil samples collected were used to measure the potential production of \(CH_4 \) from their original organic matter sources. The soils were also treated with a reducible carbon source, i.e., glucose \((C_6H_{12}O_6)\) to enhance their \(CH_4 \) production capacity and observations made on whether the initial characteristics of the soils could affect the production of \(CH_4 \). Glucose was added to the soils to ensure that carbon was not limiting in the soils.

Incubation Technique

Twenty-gram samples (air dried) of each soil type were placed in bottles of 120-ml volume. The incubation bottles consisted of glass beaker with a rubber stopper. The syringe holes for gas collection and pH/Eh electrode were arranged in series through two small holes in the stopper. The two small holes were also used to insert nitrogen gas to the headspace. Gas samples were withdrawn every 4 days and \(CH_4 \) production was recorded. To ensure maximum \(CH_4 \) production, a reducible C-source, i.e., glucose was added to all the soils; 1% of C over the weight of the soil used for incubation. In this way, the influence of soil characteristics on \(CH_4 \) production could be better observed. This is important if we want to determine the soil characteristics that control \(CH_4 \) production because not all soils contain sufficient carbon source.

All bottles were incubated anaerobically at 25°C for approximately 52 days to allow maximum process for methanogenic bacteria to produce \(CH_4 \). Distilled water (50 ml per bottle) was added to flood the soil and the bottle was tightly stoppered, therefore, there was an empty headspace of 70 ml in the bottle in which \(CH_4 \) and other gases produced during the incubation accumulated. To avoid contamination of the headspace from ambient \(CH_4 \), the empty headspace was first saturated with a \(CH_4 \)-free gas of ultra-high purity (99.99% nitrogen gas) one day before a gas sample was collected.

The experiment was conducted in four series, each consisting of three soil types with four replications, with and without glucose treatment. Therefore, in total there were 24 bottles for this study.

Assessment of \(CH_4 \) Production

To ensure the release of all \(CH_4 \) produced during sampling, a magnetic stir bar was inserted in the middle of the soil surface in each bottle before the bottles were stoppered. The bottle was stirred and flushed with \(N_2 \) for 2 minutes at a flow rate of 200 ml minute\(^{-1}\). At this time, \(CH_4 \) produced in the headspace was released and collected using a 5-ml syringe. This was considered as \(C_0 \) (concentration of \(CH_4 \) at time 0). For production rate measurement, 24 hours after taking \(C_0 \), the bottles were stirred again for 2 minutes and a 5-ml gas sample was withdrawn from the headspace (the headspace gas was mixed thoroughly by pushing the syringe plunger up and down at least 10 times). This was considered as \(C_{24} \) (concentration of \(CH_4 \) after 24 hours of incubation).

The differences in concentration between \(C_{24} \) and \(C_0 \) was regarded as the \(CH_4 \) production rate per day. After sampling for \(C_{24} \) concentration, the bottle was again flushed with \(N_2 \) while stirring for 2 minutes, and then the incubation processes were continued. Gas samples were collected every 4 days until 52 days of incubation. Methane concentration was analyzed using gas chromatograph (GC) equipped with a flame ionization detector (FID) and a porapak N column of 3m 80/100 mesh. The GC conditions were: (1) carrier gas flow of \(N_2 \) 30 ml minute\(^{-1}\), (2) 5 bars of compressed air and hydrogen pressure, (3) temperature of injection port 80°C, and (4) column temperature 110°C. A standard of 10.1 ppm of \(CH_4 \) was regularly analyzed through the GC.

Methane production rate was determined using the following equation (Lantin et al., 1995):

\[
\text{Methane production rate} = \frac{C_{24} - C_0}{24}\]
Soil controlling factors of methane production from flooded rice fields

Wang et al. (1993a) and Neue et al. (1994). The soils were grouped based on their capacity to produce CH₄. Wang et al. (1993a) mentioned that the production of CH₄ is related to soil texture, reducible iron, manganese oxides, sulfates, and organic compounds. These properties affect the redox potential, which afterwards may influence the production of CH₄ by methanogenic bacteria.

Adding 1% C-glucose to the soils increased CH₄ production by at least 12 times compared with the untreated soils (Fig. 2). The dark-gray Grumosol soil produced the highest CH₄ level, while the brown-grayish Grumosol was the lowest. Methane production from the gray Hydromorph Association showed a different pattern with very high production of CH₄ without glucose addition, which dropped following the addition of glucose. This phenomenon on the gray Hydromorph Association was unclear, but it might be due to a sudden drop of pH of the soil on glucose treatment (Fig. 3). The pH drop ranged between 3.5 and 4.0, which was probably due to the accumulation of hydrogen ion from the reduction of glucose in the anaerobic condition. Methanogenic bacteria actively produce CH₄ at pH 6-7 and this drop of pH could reduce the methanogenic activity drastically. A similar result was also obtained by Morgan (1968), who showed that in a laboratory experiment, CH₄ formation dropped after 1% organic matter was added to an acidic soil. He mentioned that large amount of acetic acid and smaller amount of propionic and n-butyric acids probably resulted during incubation in anaerobic condition, which leads to the drop of soil pH.

Chemical and Physical Analyses of the Soils

The chemical properties analyzed were total-N, P, K, Fe₂O₃, MnO₂, total-C, Ca, Mg, Na, Mn, Cu, Zn, extractable S, total-S, and CEC, whereas the physical properties were texture and bulk density of the soil, before the incubation experiment started. The soil analyses were carried out at the ICSARD, Bogor. The soils were collected randomly from ten points in every location, and mixed thoroughly to obtain composite soil sample. Results of the soil analyses are given in Table 1. Data obtained were analyzed using stepwise multiple regression (Snedecor, 1946) to determine relationship between soil properties and CH₄ production.

RESULTS AND DISCUSSION

Methane Production Potential of Various Soil Orders

The capacity of the 11 soils to produce CH₄ from its indigenous carbon source varied, and they are grouped in low, medium, and high categories. The patterns of CH₄ production from each soil during the incubation periods are given in Fig. 1. Gray-yellowish Alluvial and gray Hydromorph Association were grouped as the highest CH₄ production capacity with the total CH₄ production of 7.75 and 37.66 mg CH₄ kg⁻¹ soil, respectively. Soils categorized as brown-grayish Grumosol, red Latosol, dark-gray Grumosol and Lithosol Association, brown Latosol, and dark-brown Alluvial were grouped as medium CH₄ production capacity ranging between 0.44 and 2.54 mg CH₄ kg⁻¹ soil. The dark-gray Grumosol, dark-brown Mediterranean, brown Regosol, and brown-reddish Mediterranean were grouped as low production capacity ranging between 0.19 and 0.28 mg CH₄ kg⁻¹ soil within the 52-day period.

Grouping the soils according to their capacity to produce CH₄ was also introduced by Wang et al. (1993a) and Neue et al. (1994). The soils were grouped based on their capacity to produce CH₄. Adding 1% C-glucose to the soils increased CH₄ production by at least 12 times compared with the untreated soils (Fig. 2). The dark-gray Grumosol soil produced the highest CH₄ level, while the brown-grayish Grumosol was the lowest. Methane production from the gray Hydromorph Association showed a different pattern with very high production of CH₄ without glucose addition, which dropped following the addition of glucose. This phenomenon on the gray Hydromorph Association was unclear, but it might be due to a sudden drop of pH of the soil on glucose treatment (Fig. 3). The pH drop ranged between 3.5 and 4.0, which was probably due to the accumulation of hydrogen ion from the reduction of glucose in the anaerobic condition. Methanogenic bacteria actively produce CH₄ at pH 6-7 and this drop of pH could reduce the methanogenic activity drastically. A similar result was also obtained by Morgan (1968), who showed that in a laboratory experiment, CH₄ formation dropped after 1% organic matter was added to an acidic soil. He mentioned that large amount of acetic acid and smaller amount of propionic and n-butyric acids probably resulted during incubation in anaerobic condition, which leads to the drop of soil pH.

Figure 2 shows that most of the soils analyzed produced more CH₄ on glucose treatment. The CH₄ production potentials of the soils were divided into three categories, low (3.21-10.15 mg CH₄ kg⁻¹ soil), medium (22.51-61.08 mg CH₄ kg⁻¹ soil), and high (86.28-112.3 mg CH₄ kg⁻¹ soil). These categories were based on the statistical analyses through comparing the means of the total CH₄ produced and analyzing the differences using Duncan’s Multiple Range Test.

Total CH₄ production during 52 days of incubation was shown in Table 2. Without addition of glucose to the soil samples, the dark-gray Grumosol gave the lowest CH₄ production (0.19 mg CH₄ kg⁻¹ soil), and after addition of glucose it produced the highest (112.3 mg CH₄ kg⁻¹ soil). Before glucose was added, the CH₄ production pattern of the dark-gray Grumosol was flat. The same results were obtained on the dark-brown Mediterranean, brown Regosol, and brown-reddish Mediterranean. However, after glucose was added, the brown Regosol and dark-brown

\[
E = \left(C_{24} - C_0 \right) \times \frac{Vh \times mW \times 273.2}{20 \times mV \times (273.2 + T)}
\]

where:
- \(E \) : CH₄ production (mg kg⁻¹ soil day⁻¹)
- \(C_0 \) : CH₄ concentration in time 0 (ppm)
- \(C_{24} \) : CH₄ concentration after 24 hours (ppm)
- \(Vh \) : Volume of headspace in incubation bottles (ml)
- \(mW \) : Molecular weight of CH₄ (g)
- \(mV \) : Molecular volume of CH₄ (22.41 liter at standard temperature and pressure/stp)
- \(T \) : Temperature of incubator (°C)
Table 1. Physical and chemical properties of soils in Pati District, Central Java.

<table>
<thead>
<tr>
<th>Location</th>
<th>Soil classification (FAO)</th>
<th>Texture (%)</th>
<th>Organic matter</th>
<th>Extrac. HCl 25%</th>
<th>Citrate-dithionite</th>
<th>Oxalate</th>
<th>Extrac. DTPA</th>
<th>Mn</th>
<th>Cu</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sand</td>
<td>Silt</td>
<td>Clay</td>
<td>C (%)</td>
<td>N (%)</td>
<td>C/N</td>
<td>Extrac. Citrate-</td>
<td>Oxalate</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>Dukuhseti</td>
<td>Brown Regosol</td>
<td>52</td>
<td>34</td>
<td>14</td>
<td>0.57</td>
<td>0.07</td>
<td>9</td>
<td>329 46</td>
<td>4.75</td>
<td>0.19</td>
</tr>
<tr>
<td>Mukthiharjo</td>
<td>Red Latosol</td>
<td>3</td>
<td>30</td>
<td>67</td>
<td>0.52</td>
<td>0.04</td>
<td>12</td>
<td>119 87</td>
<td>5.72</td>
<td>0.21</td>
</tr>
<tr>
<td>Pantirejo</td>
<td>Dark-brown Alluvial</td>
<td>2</td>
<td>38</td>
<td>60</td>
<td>2.01</td>
<td>0.15</td>
<td>13</td>
<td>50 33</td>
<td>2.09</td>
<td>0.02</td>
</tr>
<tr>
<td>Dukuh Mulyo</td>
<td>Gray-yellowish Alluvial</td>
<td>8</td>
<td>71</td>
<td>21</td>
<td>1.49</td>
<td>0.15</td>
<td>10</td>
<td>94 35</td>
<td>2.16</td>
<td>0.04</td>
</tr>
<tr>
<td>Jrahi</td>
<td>Brown Latosol</td>
<td>5</td>
<td>58</td>
<td>37</td>
<td>1.62</td>
<td>0.15</td>
<td>11</td>
<td>197 22</td>
<td>4.76</td>
<td>0.19</td>
</tr>
<tr>
<td>Plosorejo</td>
<td>Gray Hydromorphic Association & brown-grayish Planosol</td>
<td>17</td>
<td>68</td>
<td>15</td>
<td>1.07</td>
<td>0.11</td>
<td>10</td>
<td>26 3</td>
<td>0.31</td>
<td>0.01</td>
</tr>
<tr>
<td>Ngurenrejo</td>
<td>Dark-gray Grumosol</td>
<td>14</td>
<td>65</td>
<td>21</td>
<td>0.71</td>
<td>0.06</td>
<td>12</td>
<td>330 88</td>
<td>2.33</td>
<td>0.19</td>
</tr>
<tr>
<td>Purwokerto</td>
<td>Brown-reddish Mediterranean and Lithosol</td>
<td>5</td>
<td>72</td>
<td>23</td>
<td>1.47</td>
<td>0.14</td>
<td>11</td>
<td>35 33</td>
<td>3.15</td>
<td>0.10</td>
</tr>
<tr>
<td>Wonorejo</td>
<td>Dark-brown Mediterranean Association</td>
<td>7</td>
<td>54</td>
<td>39</td>
<td>1.43</td>
<td>0.12</td>
<td>12</td>
<td>312 56</td>
<td>4.92</td>
<td>0.31</td>
</tr>
<tr>
<td>Banyu Urip</td>
<td>Dark-gray Grumosol and Lithosol Association</td>
<td>6</td>
<td>47</td>
<td>47</td>
<td>1.46</td>
<td>0.15</td>
<td>10</td>
<td>124 107</td>
<td>4.69</td>
<td>0.29</td>
</tr>
<tr>
<td>Treteg</td>
<td>Brown-grayish Grumosol Association</td>
<td>17</td>
<td>48</td>
<td>35</td>
<td>0.85</td>
<td>0.08</td>
<td>11</td>
<td>18 6</td>
<td>1.46</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Table 1. Continued

<table>
<thead>
<tr>
<th>Location</th>
<th>Soil classification (FAO)</th>
<th>SO4 (ppm)</th>
<th>Extract. NH4-acetate</th>
<th>pH 7</th>
<th>pH</th>
<th>Base Density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total KCl</td>
<td>Ca</td>
<td>Mg</td>
<td>K (me 100g)</td>
<td>Na</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25 N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dukuhseti</td>
<td>Brown Regosol</td>
<td>478</td>
<td>54</td>
<td>11.18</td>
<td>3.87</td>
<td>0.10</td>
</tr>
<tr>
<td>Mukthiharjo</td>
<td>Red Latosol</td>
<td>268</td>
<td>32</td>
<td>11.05</td>
<td>3.92</td>
<td>0.51</td>
</tr>
<tr>
<td>Pantirejo</td>
<td>Dark-brown Alluvial</td>
<td>1950</td>
<td>178</td>
<td>18.29</td>
<td>10.60</td>
<td>0.32</td>
</tr>
<tr>
<td>Dukuh Mulyo</td>
<td>Gray-yellowish Alluvial</td>
<td>1582</td>
<td>227</td>
<td>17.82</td>
<td>9.18</td>
<td>0.24</td>
</tr>
<tr>
<td>Jrahi</td>
<td>Brown Latosol</td>
<td>644</td>
<td>29</td>
<td>6.15</td>
<td>2.23</td>
<td>0.24</td>
</tr>
<tr>
<td>Plosorejo</td>
<td>Gray-Hydromorphic Association & brown-grayish Planosol</td>
<td>537</td>
<td>32</td>
<td>3.03</td>
<td>0.69</td>
<td>0.06</td>
</tr>
<tr>
<td>Ngurenrejo</td>
<td>Dark-gray Grumosol</td>
<td>509</td>
<td>61</td>
<td>15.90</td>
<td>5.59</td>
<td>0.37</td>
</tr>
<tr>
<td>Purwokerto</td>
<td>Brown-reddish Mediterranean and Lithosol</td>
<td>739</td>
<td>32</td>
<td>18.83</td>
<td>2.49</td>
<td>0.31</td>
</tr>
<tr>
<td>Wonorejo</td>
<td>Dark-brown Mediterranean Association</td>
<td>563</td>
<td>68</td>
<td>14.45</td>
<td>4.34</td>
<td>0.17</td>
</tr>
<tr>
<td>Banyu Urip</td>
<td>Dark-gray Grumosol and Lithosol Association</td>
<td>1050</td>
<td>118</td>
<td>8.36</td>
<td>2.66</td>
<td>1.11</td>
</tr>
<tr>
<td>Treteg</td>
<td>Brown-grayish Grumosol Association</td>
<td>262</td>
<td>32</td>
<td>18.38</td>
<td>1.61</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Soil controlling factors of methane production from flooded rice fields

Fig. 1. Methane production pattern of the soils without addition of C-glucose during 52 days of incubation. The production pattern is divided into three groups: (a) low, (b) medium, and (c) high production of CH₄.
Fig. 2. Methane production pattern of the soils with addition of C-glucose during 52 days of incubation. The production pattern is divided into three groups: (a) low, (b) medium, and (c) high production of CH$_4$.

- **Fig. 2a**
 - Gray Hydromorph Assoc.
 - Brown-greyish Grumosol
 - Brown-reddish Mediterranean

- **Fig. 2b**
 - Dark-gray Grumosol and Lithosol Association
 - Dark-brown Mediterranean
 - Dark-brown Alluvial
 - Red Latosol
 - Dark-brown Regosol

- **Fig. 2c**
 - Brown Latosol
 - Gray-yellowish Alluvial
 - Dark-gray Grumosol
Soil controlling factors of methane production from flooded rice fields

Fig. 3. pH changes of the 11 soils treated with and without C-glucose. The pH changes of the soils were recorded every 4 days for 52 days of incubation.
Mediterranean exhibited an increase in CH\textsubscript{4} production. Methane production rate of these two soils ranged between 50 and 90 mg CH\textsubscript{4} kg-1 soil. Brown-reddish Mediterranean seems to have low CH\textsubscript{4} production potential even when glucose was added to the soil (10.15 mg CH\textsubscript{4} kg-1 soil). These results give an indication that soil properties influenced the production rate of CH\textsubscript{4} in an anaerobic soil condition.

In general the results show that addition of glucose to the soil increases CH\textsubscript{4} production. In practice, rice straw, which is a high carbon source, could increase CH\textsubscript{4} production as has been shown by Schultz and Seiler (1989). They mentioned that introducing rice straw in a reduced condition could decrease the redox potential status of the soil, and hence enhance CH\textsubscript{4} emission. Denier van der Gon et al. (1992) conducted a study at International Rice Research Institute on CH\textsubscript{4} emission and production from three different paddy soils of the Philippines, e.g., Pila, Luisiana and Maahas soils. The soils were treated with 1% rice straw over the weight of the soils. The soils were selected based on their different pH and some other chemical characteristics that are prone to CH\textsubscript{4} production. Maahas is a near neutral clay soil, Luisiana is an acidic clay soil with high iron content, and Pila is a calcareous sandy loam containing partly fragmented, mollusk shells. Results of their study showed that the CH\textsubscript{4} production rate in decreasing order is Pila soil > Luisiana soil > Maahas soil. The CH\textsubscript{4} production rate of Maahas soil was much lower than that in Pila and Luisiana, which was unexpected since Maahas soil was categorized as moderate in terms of soil characteristics for CH\textsubscript{4} production (active Fe, pH and organic C) (Table 3). Denier van der Gon et al. (1992) suggested that total organic carbon of soils did not directly correlate with CH\textsubscript{4} production. Therefore, other characteristics must be considered such as the chemical properties of the soils, which can influence the redox potential and pH status. In terms of soil organic carbon, determination of the soil organic fractions could possibly achieve better correlation with CH\textsubscript{4} production, i.e., reducible and non-reducible organic carbon.

Methane production from the brown-grayish Grumosol increased eight fold after the addition of glucose to the soil. The other soils produced higher CH\textsubscript{4} of twelve to thirty fold. One possible reason is that the redox potential of the brown-grayish Grumosol soil was below the optimal condition for methanogenesis. This issue needs further study because one of the most influential redox potential buffers in this soil, i.e., the Fe\textsubscript{2}O\textsubscript{3} (citrate-dithionite) concentration was also low compared to the other soils. Data in Table 1 show that the Fe\textsubscript{2}O\textsubscript{3} concentration was 1.46%, which is categorized as the second lowest Fe concentration compared with the other soils. The lowest values occur in gray Hydromorph Association, i.e., 0.31%.

The addition of glucose as a source of reducible C to the soil to elucidate the controlling factors of soil characteristic on CH\textsubscript{4} production potential did not entirely give the expected result. The glucose concentration applied to the soils was probably too high to represent reducible carbon occurring in natural conditions (1% of the total weight of soil used for incubation), and this possibly affected the micro-environment of the flooded soils such as pH.

Application of glucose to flooded soil changed the pH of the soil. Soils with low capacity to buffer pH drop could undergo extreme change in pH to low

Table 2. Total methane production after 52 days of incubation of soils treated without and with glucose.

<table>
<thead>
<tr>
<th>Soil name</th>
<th>Methane production (mg CH\textsubscript{4} kg-1 soil)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without glucose</td>
</tr>
<tr>
<td>Brown Regosol</td>
<td>0.27c</td>
</tr>
<tr>
<td>Red Latosol</td>
<td>0.47c</td>
</tr>
<tr>
<td>Dark-brown Alluvial</td>
<td>2.54c</td>
</tr>
<tr>
<td>Gray-yellowish Alluvial</td>
<td>7.75b</td>
</tr>
<tr>
<td>Brown Latosol</td>
<td>1.24c</td>
</tr>
<tr>
<td>Gray Hydromorph Assoc.</td>
<td>37.66a</td>
</tr>
<tr>
<td>Dark-gray Grumosol</td>
<td>0.19c</td>
</tr>
<tr>
<td>Brown-reddish Mediterranean</td>
<td>0.28c</td>
</tr>
<tr>
<td>Dark-brown Mediterranean</td>
<td>0.21c</td>
</tr>
<tr>
<td>Dark-gray Grumosol and Lithosol Association</td>
<td>0.77c</td>
</tr>
<tr>
<td>Brown-grayish Grumosol</td>
<td>0.44c</td>
</tr>
</tbody>
</table>

Numbers in a same column followed by the same letter are significant at 5% level DMRT

Table 3. Characteristics of soil originating from Luzon, the Philippines.

<table>
<thead>
<tr>
<th>Soil</th>
<th>Maahas</th>
<th>Luisiana</th>
<th>Pila</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 1 : 1 H\textsubscript{2}O</td>
<td>5.9</td>
<td>4.5</td>
<td>7.8</td>
</tr>
<tr>
<td>CEC (meq 100+g-1)</td>
<td>40.2</td>
<td>24.9</td>
<td>27.2</td>
</tr>
<tr>
<td>Organic C (%)</td>
<td>1.97</td>
<td>1.84</td>
<td>1.47</td>
</tr>
<tr>
<td>N (%)</td>
<td>0.166</td>
<td>0.18</td>
<td>0.182</td>
</tr>
<tr>
<td>Olsen P (ppm)</td>
<td>2.5</td>
<td>5.9</td>
<td>24</td>
</tr>
<tr>
<td>Active Fe (%)</td>
<td>1.53</td>
<td>4.63</td>
<td>0.8</td>
</tr>
<tr>
<td>Active Mn (%)</td>
<td>0.09</td>
<td>0.109</td>
<td>0.058</td>
</tr>
<tr>
<td>Clay (%)</td>
<td>66</td>
<td>56</td>
<td>21</td>
</tr>
<tr>
<td>Silt (%)</td>
<td>28</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Sand (%)</td>
<td>6</td>
<td>4</td>
<td>39</td>
</tr>
</tbody>
</table>

Source: Denier Van der Gon et al. (1992)
values, and as such, are not suitable for methano-
genic bacteria. The gray Hydromorph Association
exhibits this characteristic. As has been discussed
previously, the extreme drop in pH value was
associated with reduced CH₄ production. Although
other soils reacted similarly, the pH drop was not as
extreme as that shown by the gray Hydromorph
Association (Fig. 3), and conditions were still
tolerable for methanogenic bacteria (pH 5.0-6.0).

Determination of the Controlling Factors of CH₄ Production

Soil characteristics, such as pH, sand, silt, clay, Mg,
Cu, C/N, P, O₃, Fe₂O₃, N, SO₄, C-organic, MnO₂, were
used in the stepwise multiple regression. Those
parameters were involved in the reduction-oxidation
processes and pH changes in soils. Using the
stepwise multiple regression, five soil characteristics
were found to greatly affect the CH₄ production, i.e.,
pH, Fe₂O₃, MnO₂, SO₄, and silt. The equation for the
stepwise multiple regression is:

\[
\text{CH}_4 \text{ production} = 7.88 + 4.57 \text{ pH (H}_2\text{O)} - 0.03 \text{ silt (%)} \\
- 0.015 \text{ Fe}_2\text{O}_3 - \text{total} (%) + 0.088 \\
\text{MnO}_2-\text{total} (%) + 0.078 \text{ SO}_4- \\
\text{available (ppm)}
\]

Soil pH affects the environmental conditions of
methanogenic bacteria to produce CH₄. The optimum
pH of paddy soils required by methanogenic bacteria
is around 6.0-6.6. The same result was obtained by
Wang et al. (1993b). The other elements, e.g., Fe₂O₃,
MnO₂, and SO₄ contents in the soil affected the redox
condition of soil.

Silt content of the soil highly affected the CH₄
production. Data from Table 2 show that most of the
soils contained high amounts of silt, ranging from 30
to 71%. The lowest silt content occurs in red Latosol
while the highest was found in gray-yellowish
Alluvial. The sand distribution of the soils varied
between 2 and 52%, while the clay ranged from 14 to
67%. The high content of clay occurred in dark-
brown Alluvial soil while the lowest occurred in
brown Regosol.

Research reported by Neue and Roger (1993) and
Neue and Roger (1994) did not find the same results
as obtained in Pati. They determined that reduced
sandy soils with high organic carbon produced more
CH₄ than clay soils with similar carbon contents.
However, results from their experiment show that the
active particle size distribution, i.e., clay, did not
afflict the production of CH₄, similar to the results
obtained in Pati. The negative impact of clayey
texture on CH₄ production may be caused by the
formation of organo-mineral complexes. Sandy soils
showed low entrapped CH₄ (Wang et al., 1993b)
because the pore size distribution enhances ebul-
lition and diffusion (Neue and Roger, 1993). Methane
fluxes in clayey soils may also be lower because
entrapped CH₄ may be oxidized before it can escape
to the atmosphere. Methane production is limited in
sandy soils if water percolation and the resultant
redox potential are high. Disturbances of anaerobic
conditions by cultural practices, e.g., puddling,
transplanting, fertilization, and weeding could release
soil-entrapped CH₄ to the atmosphere. Denier van der
Gon et al. (1992) estimated that these soil disturb-
ances contributed to about 10% to the total CH₄
emission.

Oxidized forms of components in the soil, such as
Fe³⁺, Mn⁴⁺, and SO₄²⁻, will not be directly used as
electron acceptors in biological reductions before all
O₂ is released or used. After submergence, O₂ will
dissolve in the flooded water and will be consumed
quickly by microbes in the soil. The need for electron
acceptors by facultative anaerobic and true anaerobic
organisms results in the reduction of several oxidized
components. Reduction of NO₃⁻ to NO₂⁻ and N₂O to
N₂, Mn⁴⁺ to Mn²⁺, Fe³⁺ to Fe²⁺, SO₄²⁻ to S²⁻ and CO₂
to CH₄ will occur sequentially in flooded soil (because
of thermodynamic principles) as long as available C
sources exist and all entrapped O₂ is released (Patrick
and Delaune, 1977). A corresponding decrease in soil
Eh indicates the depletion of subsequent oxidants.
For examples, nitrate is reduced to N₂O and N₂ in an
Eh ranging between +250 to +350 mV. Manganic
forms are reduced in slightly lower Eh range. Ferric
iron reduction occurs in the range of +120 to +180 mV
(Connel and Patric, 1969; Jakobsen et al., 1981)

Other compounds considered as micronutrients,
i.e., Cu, Zn, and Mg, are probably involved in the
metabolic activity of methanogenic bacteria. Their
concentration in soil could enhance CH₄ production.
The only reference available on the effect of
micronutrients on CH₄ production was by Banik et al.
(1995), which indicates that Zn is sensitive to
methanogens at the concentration of 1-10 mg ml⁻¹.
Cobalt is a constituent of cyanocobalamin, which is
used for CH₄ production. Nickel is a constituent of
urease, co-enzyme F₄₃₀ and F₄₅₀Reducing hydrogenase,
and methyl reductase. Molybdenum, a constituent of
nitrogenase and NO₃⁻ reductase, also stimulates CH₄
production in pure cultures of methanogens and in an
anaerobic digester. In a supra-optimal concentra-
tions, these elements could possibly decrease CH₄
emission, which is presumably due to saturation of
the relevant enzyme surfaces, competition for
electrons between methanogens and SO$_4^{2-}$ and NO$_3^-$ reducers, and the development of toxicity (Banik et al., 1995).

CONCLUSIONS

Addition of 1% glucose to soil samples led to an increase in CH$_4$ production by more than twelve fold. The CH$_4$ production potential ranged between 3.21 and 112.30 mg CH$_4$ kg$^{-1}$ soil. The lowest CH$_4$ production potential occurred in brown-grayish Grumosol while the highest occurred in dark-gray Grumosol. Methane production potential of the soils without glucose addition ranged between 0.21 and 7.75 mg CH$_4$ kg$^{-1}$ soil. The lowest CH$_4$ production potential occurred in dark-gray Grumosol while the highest CH$_4$ production potential occurred in gray-yellowish Alluvial. Gray Hydromorph Association does not fit in this range because of its very high CH$_4$ production potential (37.66 mg CH$_4$ kg$^{-1}$ soil) compared with the other soils.

Chemical and physical properties of the soils have a great influence on CH$_4$ production. Stepwise multiple regression analyses of CH$_4$ production potential and soil characteristics show that soil pH and the contents of Fe$_2$O$_3$, MnO$_2$, SO$_4$, and silt in soil strongly influenced CH$_4$ production.

ACKNOWLEDGEMENT

The authors give special thanks to Mr. Jumari, Suryanto, Suyoto, Mr. Sudarmin, Mr. Yarpani, Ms. Titi Sopiawati and the other staff of the Jakenan Agricultural Environment Preservation Research Station, Pati, Central Java, who helped us conducting this study.

REFERENCES

