ANALISIS USAHATANI SISTEM TANAM DOUBLE ROW
PADA TANAMAN UBIKAYU (Manihot esculenta) DI LAMPUNG

Robet Asnawi

Balai Pengkajian Teknologi Pertanian Lampung
Jl. Z.A. Pagar Alam No.1 A. Bandar Lampung 35144

ABSTRACT

The assessment of double row planting system of cassava was aimed at solving the low productivity of cassava due to the decrease of planting area in Lampung which was changed to palm oil, rubber, and cocoa as well as to fulfill the need of tapioca/cassava flour and bio-ethanol gas. The experiment was conducted at Natar Experimental Garden in South Lampung and on farmers' land in North Lampung from November 2004 to October 2005. The double row planting system treatment was a packet of technology that uses double row planting system with a distant between rows is 80 cm and 60 cm and a space within a row is 80 cm. The experiment used a UJ-5 variety in addition to the use of 200 kg of Urea, about 150 kg of SP-36 and around 100 kg of KCl with a 5 ton cattle-manure per ha. As a comparison, an observation was carried out on conventional technology where the planting is 70 x 80 cm in addition to the use of 75 kg Urea, 50 kg SP-36, 50 kg KCl and a UJ-5 variety. The results showed that the productivity of double row planting system produces as twice many as the traditional method, as shown by 60.24 ton/ha at Natar and 53.25 ton/ha in North Lampung compared to 28.45 ton/ha and 17.56 ton/ha respectively. It is increased more than 100% compared to farmers conventional planting system. In short, the double row planting system is more feasible and profitable at R/C of 2.55 as compared to R/C of 1.65 in farmers' conventional planting system. Although with a decrease of price up to 20% occurs it would likely to proof that the double row planting system is still feasible and profitable.

Key word: double row, farming system, productivity, Manihot esculenta

ABSTRAK

Kajian sistem tanam double row pada tanaman ubikayu bertujuan untuk mengatasi rendahnya produktivitas ubikayu di Lampung, sebagai akibat dari menurunnya luas areal ubikayu menjadi kelapa sawit, karet, dan kakao serta untuk memenuhi kebutuhan bahan baku tapioka dan bio-etanol. Kajian ini telah dilaksanakan di Kebun Percobaan Natar, Lampung Selatan dan lahan petani di Kecamatan Abung Semuli, Lampung Utara, mulai bulan November 2004 sampai Oktober 2005. Penerapan paket teknologi sistem tanam double row yakni jarak antar barisan sama yakni 80 cm dan jarak dalam barisan sama yakni 80 cm. Paket ini menggunakan varietas UJ-5 dan pemupukan 200 kg Urea/ha + 150 kg SP36/ha + 100 kg KCl/ha + 5 ton pupuk kandang/ha. Sebagai perbandingan dilakukan pengamatan terhadap ubikayu yang umum dilakukan petani yakni jarak tanam 70 x 80 cm, pupuk 75 kg Urea/ha + 50 kg SP36 + 50 kg KCl serta varietas UJ-5. Hasil kajian menunjukkan bahwa produktivitas ubikayu dengan teknologi petani menghasilkan 28,45 ton/ha di KP Natar dan 17,56 ton/ha di Lampung Utara, sedangkan sistem tanam double row adalah 60,24 ton/ha di KP Natar dan 53,52 ton/ha pada lahan petani di Lampung Utara atau terjadi peningkatan produktivitas lebih dari 100%. Usahatani ubikayu dengan sistem tanam double row kompetitif dan layak diusahakan dengan nilai R/C 2,55, sedangkan pada cara petani memiliki nilai R/C 1,65. Walaupun terjadi penurunan harga jual ubikayu sampai 20%, sistem tanam double row masih layak dan menguntungkan.

Kata Kunci: double row, usahatani, produktivitas, Manihot esculenta

PENDAHULUAN

Jumlah pabrik pengolahan ubikayu di Provinsi Lampung terus meningkat dari tahun ke tahun, sementara luas areal terus menurun. Pada tahun 2005 di Provinsi Lampung terdapat 130 pabrik pengolahan ubikayu berskala besar yang membutuhkan bahan baku ubikayu sekitar lima juta ton per tahun. Pada tahun 2006 ini akan terealisasi pembangunan empat bau nabab pengolahan ubikayu menjadi energi alternatif (bio-etanol) yang membutuhkan bahan baku cukup banyak sekitar empat sampai lima juta ton per tahun. Dengan berkurangnya luas areal tanaman ubikayu dan meningkatnya kebutuhan bahan baku ubikayu untuk industri makanan dan bio-etanol sementara produktivitas ubikayu masih rendah, maka solusi yang tepat adalah peningkatan produktivitas per satuan luas. Karena itu penggunaan sistem tanam *double row* diharapkan akan menjadi salah satu alternatif untuk mengatasi kekurangan bahan baku ubikayu di masa mendatang.

METODOLOGI

Kajian sistem tanam *double row* telah dilakukan pada bulan Nopember 2004 sampai Oktober 2005 di Kecamatan Natar (Kabupaten Lampung Selatan) dan di lahan petani di Desa Sukamakmur, Kecamatan Abung Semuli (Kabupaten Lampung Utara) dengan total luas areal 3 ha. Penerapan paket teknologi sistem tanam *double row* dengan jarak antar barisan 80 cm dan 160 cm sedangkan jarak dalam barisan sama yakni 80 cm (Gambar 1). Paket ini dilengkapi dengan penggunaan varietas UJ-5 (Balai Penelitian Kacang-kacangan dan Ubi-ubian, 2005) dan pemupukan 200 kg Urea/ha + 150 kg SP36/ha + 100 kg KCI/ha + 5 ton pupuk kandang/ha.

Analisis Usahatani Sistem Tanam Double Row pada Tonoman Ubikayu (*Manihot esculenta*) di Lampung (Robet Asnawi)
Teknologi yang biasa digunakan petani adalah jarak tanam 70 x 80 cm dengan penggunaan pupuk 75 kg Urea/ha + 50 kg SP36 + 50 kg KCl serta varietas UJ-5. Pemupukan diberikan pada saat tanaman berumur 10 hari setelah tanam, dengan menaburkan pupuk di sekeliling batang ubikayu. Keuntungan menggunakan sistem tanam double row adalah jumlah bahan tanaman ubikayu lebih sedikit yakni 10.200 tanaman sedangkan sistem petani 17.500 tanaman. Keuntungan lain adalah dapat dilakukan penanaman tanaman sela seperti kacang tanah dan kedele pada jarak barisan ubikayu 160 cm.

Parameter yang diamati antara lain adalah komponen produksi ubikayu, penggunaan input produksi dan tenaga kerja, serta pendapatan/keuntungan sistem tanam double row. Sebagai pembanding dilakukan pengamatan yang sama untuk penanaman ubikayu dengan cara petani.

Analisis data yang digunakan adalah analisis usahatani untuk membandingkan sistem tanam double row dan teknologi petani di sekitar areal kajian. Analisis usahatani yang dilakukan antara lain adalah metode analisis imbang penerimaan dan biaya (R/C), titik impas produksi dan titik impas harga (Sudana dkk, 2002).

Imbang Penerimaan dan R/C.
Penerimaan usahatani merupakan nilai produksi yang dihasilkan dan dinyatakan dalam bentuk uang. Pengeluaran usahatani merupakan nilai semua masukan tetap dan tidak tetap yang dikeluarkan dalam proses produksi yang dinyatakan dalam satuan hektar. Selisih antara penerimaan dengan pengeluaran merupakan keuntungan usahatani. Untuk mengetahui tingkat efisiensi usahatani, digunakan analisis imbang penerimaan dan biaya atau R/C dengan rumus:

Penerimaan

\[R/C = \frac{Pengeluaran}{Total~Tidak~Tetap} \]

Titik Impas Produksi dan Harga. Dengan mempelajari hubungan antara biaya produksi dengan volume penjualan atau penerimaan, maka dapat diketahui tingkat keuntungan serta kelayakan suatu usaha. Salah satu teknik dalam mempelajari hubungan antara biaya penerimaan dan volume produksi adalah analisis titik impas produksi (TIP) dan titik impas harga (TIH) dengan rumus sebagai berikut:

\[TIP = \frac{Total~Biaya~Tidak~Tetap + Biaya~Tetap}{Harga~Produksi} \]

\[TIH = \frac{Total~Biaya~Tidak~Tetap + Biaya~Tetap}{Total~Produksi} \]

HASIL DAN PEMBAHASAN

Keragaan Tanaman

Hasil kajian yang telah dilaksanakan di KP. Natar Kabupaten Lampung Selatan dan lahan petani di Desa Sukamakmur, Kecamatan Abung Semuli, Kabupaten Lampung Utara menunjukkan bahwa produktivitas ubikayu yang dihasilkan oleh sistem tanam *double row* sangat berbeda nyata dibandingkan dengan cara petani di sekitar lokasi kajian. Dari Tabel 1 terlihat bahwa produktivitas ubikayu dengan teknologi petani (jarak tanam 70 x 80 cm) menghasilkan ubikayu 28,45 ton/ha di KP Natar dan 17,56 ton/ha di Lampung Utara, sedangkan sistem tanam *double row* menghasilkan produktivitas 60,24 ton/ha di KP Natar dan 53,52 ton/ha pada lahan petani di Lampung Utara. Hal tersebut dikarenakan pada sistem tanam *double row* (Gambar 2) dengan jarak antar barisan yang lebih besar (160 cm) menyebabkan tanaman lebih banyak memperoleh cahaya matahari dibandingkan dengan sistem tanam biasa (jarak antar barisan 80 cm) sehingga tanaman dapat melakukan fotosintesis lebih sempurna yang berakibat pada lebih banyaknya ubikayu yang dihasilkan. Menurut Harjadi (1980), bahwa fotosintesis merupakan proses karbon dioksida dan air dibawah pengaruh cahaya diubah ke persenyawaan organik yang berisi karbon dan kaya energi. Perubahan energi cahaya ke dalam energi kimia merupakan proses kehidupan tanaman yang paling menonjol. Daerah perakaran (*rizosphere*) sebagai tempat tumbuh umbi ubikayu akan lebih besar pada sistem tanam *double row* dibandingkan dengan cara petani (Gambar 3). Jika dilihat dari berat tanaman/pohon terlihat bahwa teknologi sistem tanam *double row* menghasilkan berat umbi 6,02 kg/pohon sedangkan sistem tanam petani 1,85 - 3,32 kg/pohon (Tabel 1).

Gambar 2. Sistem tanam *double row* (atas) dan cara petani (bawah)

Selain pengaruh cahaya, berat dan ukuran umbi juga dipengaruhi adanya pemupukan Urea, Sp36 dan KCl. Petani pada umumnya memupuk tanaman ubikayu dalam jumlah minimal bahkan sebagian besar tidak memupuk.
<table>
<thead>
<tr>
<th>Nama Petani</th>
<th>Lokasi</th>
<th>Varietas</th>
<th>Sistem Tanam</th>
<th>Pemupukan (kg/ha)</th>
<th>Jumlah Umbi/phin (buah)</th>
<th>Panjang Umbi (cm)</th>
<th>Diameter umbi (cm)</th>
<th>Berat umbi/phin (kg)</th>
<th>Produkti vitas (ton/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarjono</td>
<td>Lampung Utara</td>
<td>UJ-5</td>
<td>Double Row</td>
<td>150 kg Urea + 100 kg SP36 + 100 kg KCl + 5 ton pukan</td>
<td>17,32</td>
<td>25,36</td>
<td>5,23</td>
<td>5,58</td>
<td>53,52</td>
</tr>
<tr>
<td>Faisal</td>
<td>Lampung Utara</td>
<td>UJ-5</td>
<td>Petani/Biasa</td>
<td>150 kg Urea + 100 kg SP36 + 100 kg KCl + 5 ton pukan</td>
<td>9,40</td>
<td>21,80</td>
<td>4,86</td>
<td>3,23</td>
<td>30,25</td>
</tr>
<tr>
<td>Hidayat</td>
<td>Lampung Utara</td>
<td>UJ-5</td>
<td>Petani/Biasa</td>
<td>75 kg Urea + 50 kg SP36 + 25 kg KCl</td>
<td>6,82</td>
<td>14,42</td>
<td>3,92</td>
<td>1,85</td>
<td>17,56</td>
</tr>
<tr>
<td>Heri</td>
<td>KP Natar Lam Sel</td>
<td>UJ-5</td>
<td>Petani/Biasa</td>
<td>75 kg Urea + 50 kg SP36 + 50 kg KCl</td>
<td>11,28</td>
<td>22,31</td>
<td>5,01</td>
<td>3,32</td>
<td>28,45</td>
</tr>
<tr>
<td>BPTP</td>
<td>Lampung Lam Sel</td>
<td>UJ-5</td>
<td>Double Row</td>
<td>150 kg Urea + 100 kg SP36 + 100 kg KCl + 5 ton pukan</td>
<td>16,84</td>
<td>26,62</td>
<td>5,49</td>
<td>6,02</td>
<td>60,24</td>
</tr>
</tbody>
</table>

Keterangan:
- Sistem tanam double row menggunakan jarak tanam (160 cm x 80 dan 80 cm x 80 cm)
- Sistem tanam petani menggunakan jarak tanam 70 cm x 80 cm

Penggunaan Input Usahatani

Total penggunaan biaya input usahatani pada sistem tanam double row lebih tinggi 48% dibandingkan dengan cara petani (Tabel 2). Hal tersebut disebabkan karena penggunaan pupuk Urea, SP36, KCl, dan pupuk kandang yang lebih tinggi pada sistem tanam double row dibandingkan dengan cara petani, sedangkan penggunaan bahan tanaman lebih sedikit dibandingkan dengan cara tanam petani. Pada sistem tanam double row penggunaan pupuk per hektar adalah 200 kg Urea + 150 kg SP36 + 100 kg KCl + 3 ton pupuk kandang dengan total biaya sebesar Rp.1.280.000,-, sedangkan pada sistem tanam petani menggunakan 75 kg Urea + 50 kg SP36 + 50 kg KCl + 1 ton pupuk kandang

Gambar 2. Sampel panen ubikayu cara petani (atas) dan sistem tanam double row (bawah)
dengan total biaya sebesar Rp.485.000,-. Kondisi nyata di lapangan banyak petani yang menggunakan pupuk an organik dan organik dalam jumlah sedikit bahkan sebagian kecil tidak melakukan pemupukan sebagai akibat keterbatasan modal usahatani, sedangkan pada sistem tanam double row menggunakan teknologi anjuran dengan dosis pemupukan optimal. Pada sistem tanam double row membutuhkan bahan tanaman sebanyak 10.200 tanaman/ha sedangkan cara petani membutuhkan 17.500 tanaman/ha. Banyak petani beranggapan salah yakni semakin banyak tanaman yang di tanam (jarak tanam rapat) maka semakin banyak hasil yang akan diperoleh. Hal tersebut berlawanan dengan hasil kajian yang diperoleh bahwa tanaman ubikayu memerlukan cahaya dan ruang gerak yang cukup untuk pertumbuhan umbi. Selain itu, areal ubikayu yang menggunakan sistem tanam double row lebih mudah dilakukan penyiangan dibandingkan dengan cara petani karena jarak antar baris yang lebih besar pada sistem tanam double row dibandingkan dengan cara petani.

<table>
<thead>
<tr>
<th>Uraian</th>
<th>Double Row</th>
<th>Cara Petani</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fisik</td>
<td>Nilai (Rp.)</td>
</tr>
<tr>
<td>Bibit ubikayu (tanaman)</td>
<td>10.200</td>
<td>153.000</td>
</tr>
<tr>
<td>Pupuk Urea (kg)</td>
<td>200</td>
<td>240.000</td>
</tr>
<tr>
<td>Pupuk SP36 (kg)</td>
<td>150</td>
<td>375.000</td>
</tr>
<tr>
<td>Pupuk KCl (kg)</td>
<td>100</td>
<td>290.000</td>
</tr>
<tr>
<td>Pupuk kandang (ton)</td>
<td>3</td>
<td>375.000</td>
</tr>
<tr>
<td>Herbisida (lt)</td>
<td>4</td>
<td>140.000</td>
</tr>
<tr>
<td>Jumlah</td>
<td>-</td>
<td>1.573.000</td>
</tr>
</tbody>
</table>

Tabel 3. Penggunaan Tenaga Kerja per Hektar Usahatani Ubikayu dengan Sistem Tanam Double Row dan Cara Petani di Lampung Utara dan Lampung Selatan.

<table>
<thead>
<tr>
<th>Uraian</th>
<th>Double Row</th>
<th>Cara Petani</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fisik</td>
<td>Nilai (Rp.)</td>
</tr>
<tr>
<td>Pengolahan tanah (OH)</td>
<td>30</td>
<td>450.000</td>
</tr>
<tr>
<td>Penanaman (OH)</td>
<td>15</td>
<td>225.000</td>
</tr>
<tr>
<td>Pemupukan (OH)</td>
<td>15</td>
<td>225.000</td>
</tr>
<tr>
<td>Penyiangan I (OH)</td>
<td>25</td>
<td>375.000</td>
</tr>
<tr>
<td>Penyiangan II (OH)</td>
<td>10</td>
<td>150.000</td>
</tr>
<tr>
<td>Panen (OH)</td>
<td>65</td>
<td>975.000</td>
</tr>
<tr>
<td>Transportasi (kg)</td>
<td>55.000</td>
<td>2.750.000</td>
</tr>
<tr>
<td>Jumlah</td>
<td>-</td>
<td>5.150.000</td>
</tr>
</tbody>
</table>

Analisis Usahatani Sistem Tanam Double Row pada Tanaman Ubikayu (Manihot esculenta) di Lampung (Robet Asnawi)
tanaman yang lebih banyak (lebih rapat) pada sistem tanam petani dibandingkan dengan sistem tanam double row, sedangkan ongkos panen sama karena menggunakan sistem borongan per hektar.

Analisis Usahatani

Dari analisis usahatani ubikayu pada Tabel 4 terlihat bahwa total biaya variable usahatani ubikayu dengan sistem tanam double row lebih tinggi 29,67% dibandingkan dengan sistem tanam petani. Perbedaan tersebut antara lain disebabkan oleh tingginya biaya pembelian pupuk dan biaya transportasi (biaya angkut hasil). Pada sistem tanam double row menggunakan pupuk dengan dosis anjuran yakni 200 kg Urea + 150 kg SP36 + 100 kg KCl + 3 ton pupuk kandang per hektar, sedangkan pada sistem tanam petani hanya menggunakan 75 kg Urea + 50 kg SP36 + 50 kg KCl + 1 ton pupuk kandang. Tingginya biaya transportasi pada sistem tanam double row disebabkan oleh lebih tingginya hasil ubikayu yang dihasilkan oleh sistem tanam double row (55 ton/ha) dibandingkan dengan cara petani (25 ton/ha) atau terjadi perbedaan hasil sebesar lebih

<table>
<thead>
<tr>
<th>No</th>
<th>Uraian</th>
<th>Sistem Tanam</th>
<th>Cara Petani</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Double Row</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Biaya input (Rp)</td>
<td>1.573.000</td>
<td>817.500</td>
</tr>
<tr>
<td></td>
<td>1.1. Biaya material</td>
<td>515.000</td>
<td>3.800.000</td>
</tr>
<tr>
<td></td>
<td>1.2. Biaya tenaga kerja</td>
<td>1.463.000</td>
<td>1.140.000</td>
</tr>
<tr>
<td></td>
<td>1.3. Rafaksi (Potongan Timbangan)</td>
<td>8.186.000</td>
<td>5.757.500</td>
</tr>
<tr>
<td></td>
<td>Total biaya variable</td>
<td>356.500</td>
<td>356.500</td>
</tr>
</tbody>
</table>

II	Output		
2.1	Produksi (kg)	55.000	25.000
2.2	Harga (Rp/kg)	380	380
2.3	Nilai produksi (Rp)	20.900.000	9.500.000
	Keuntungan bersih (Rp)	12.714.000	3.742.500
IV	R/C	2.55	1.65
V	Titik impas produksi (ton)	22,480	16,089
VI	Titik impas harga (Rp)	155	245

<table>
<thead>
<tr>
<th>Uraian</th>
<th>Double Row</th>
<th>Harga</th>
<th>Turun 10 %</th>
<th>Turun 20 %</th>
<th>Turun 30 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Produksi (kg)</td>
<td>55.000</td>
<td>55.000</td>
<td>55.000</td>
<td>55.000</td>
<td></td>
</tr>
<tr>
<td>2. Harga (Rp)</td>
<td>380</td>
<td>342</td>
<td>304</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>3. Nilai produksi (Rp)</td>
<td>20.900.000</td>
<td>18.810.000</td>
<td>16.672.000</td>
<td>14.630.000</td>
<td></td>
</tr>
<tr>
<td>5. R/C</td>
<td>2,55</td>
<td>2,34</td>
<td>2,12</td>
<td>1,89</td>
<td></td>
</tr>
</tbody>
</table>

dari 100%. Produktivitas ubikayu varietas UJ-5 dengan sistem tanam double row ini lebih tinggi 30% dari potensi hasil yang dihasilkan yakni 38 ton/ha (Balai Penelitian Tanaman Kacang-kacangan dan Umbi-umbian, 2005).

Dilihat dari titik impas produksi (TIP) dan titik impas harga (THI), maka usahatani ubikayu dengan sistem tanam double row memiliki nilai TIP 22,480 ton dan THI Rp.71,74,- sedangkan pada cara petani memiliki nilai TIP 8.567 kg dan THI Rp.155,-.

Faktor kunci penentu usahatani ubikayu di Lampung adalah harga. Penentuan harga ubikayu sering kali bukan ditentukan oleh mekanisme pasar seperti pada umumnya, tetapi lebih ditentukan sepibahkan oleh pabrik tapioka berskala besar yang ada seperti PT. Sungai Budi (Bumi Waras) dan PT. Eka Wira Kencana sebagai akibat sistem pasar monopsoni. (Zakaria, 1997), sehingga analisis sensitivitas difokuskan terhadap penurunan harga jual ubikayu yang sering kali terjadi di Lampung.

Hasil analisis sensitivitas pada Tabel 5 terlihat bahwa penurunan harga jual sampai 20% usahatani ubikayu dengan sistem double row masih kompetitif yang ditandai oleh nilai R/C 2,12 atau lebih dari dua, sedangkan penurunan harga sampai dengan 30% maka usahatani dengan sistem double row ini kurang kompetitif yang ditunjukkan oleh nilai R/C 1,89 atau kurang dari dua.

Dilihat dari analisis TIP dan THI, pada tingkat produksi dan harga aktual yang ada saat ini, penurunan harga jual sampai 20 persen usahatani ubikayu dengan sistem tanam double row masih memberikan keuntungan normal sedangkan jika penurunan harga sampai 30% maka usahatani tersebut dapat dikategorikan tidak layak lagi.

KESIMPULAN

Dari hasil kajian yang telah diuraikan atas dapat disimpulkan bahwa untuk memenuhi kebutuhan ubikayu di Lampung sementara luas areal terus menurun maka penerapan teknologi sistem tanam double row harus segera dilakukan. Hasil kajian menunjukkan bahwa sistem tanam double row mampu meningkatkan produktivitas lebih dari 100%. Berdasarkan analisis sensitivitas, penurunan harga jual ubikayu sampai 20% maka usahatani ubikayu dengan sistem tanam double row masih layak diusahakan dan menguntungkan.

Disarankan agar dilakukan sosialisasi terhadap penerapan sistem tanam double row untuk meningkatkan produktivitas ubikayu di Lampung karena semakin meningkatnya kebutuhan bahan baku ubikayu untuk keperluan pangan maupun bio-etanol, sementara luas areal tanam terus menurun setiap tahun akibat alih fungsi lahan ubikayu menjadi kelapa sawit, karet dan kakao.

DAFTAR PUSTAKA

Analisis Usahatani Sistem Tanam Double Row pada Tanaman Ubikayu (Manihot esculenta) di Lampung (Robet Asnawi)

46

