PERANAN SEMUT (Oecophylla smaragdina dan Dolichoderus sp.)
DALAM PENGENDALIAN Helopeltis spp., dan Sanurus indecora PADA JAMBU METE

ELNA KARMAWATI, SISWANTO, dan E.A. WIKARDI

Balai Penelitian Tanaman Rempah dan Obat

ABSTRAK

Kata kunci : Anacardium occidentale, jambu mete, Helopeltis spp., nektar, Sanurus indecora, semut

PENDAHULUAN

Di India, Helopeltis spp. ini juga merupakan hama paling serius pada pertanian jambu mete dengan kerugian mencapai 30 - 40% (DEVASAHAHYAM and NAIR, 1986). Hanya satu spesies Helopeltis yang ditemukan di India yaitu H. antoni Signore. Spesies ini aktif dari bulan Oktober sampai Mei dan populasi mencapai puncak sekitar bulan Januari (DEVASAHAHYAM, 1985).

Di samping serangga hama dan parasitoid, berbagai serangga dan organisme lain berperan penting pada tanaman jambu mete antara lain Symemmatus sp. yang menyerang nimfa dan imago S. indecora di Nusa Tenggara Barat, serta serangga penyembur (PURNAYASA, 2000).

Tujuan dari penelitian ini adalah untuk mengetahui peranan semut hitam dan semut rangrang dalam mengendalikan Helopeltis spp. serta interaksinya dengan S. indecora.

BAHAN DAN METODE

Tempat dan Waktu

Metodologi

Pada penelitian lapang keadaan lingkungan tidak dikendalikan, pengamatan dilakukan dengan penarikan contoh. Penelitian dilakukan pada pertanaman jambu mete milik petani berumur sekitar 6 –10 tahun. Dua lokasi pertanaman yang berbeda kondisinya telah dipilih yaitu a) pertanaman dengan populasi Helopeltis spp. lebih dominan dibandingkan S. indecora dan b) pertanaman dengan populasi S. indecora lebih dominan dibandingkan dengan populasi Helopeltis spp. Lokasi (a) terletak di Desus Sambik Jengkel, sedangkan lokasi (b) di Desus Sambik Rindang, Kecamatan Kayangan, Kabupaten Lombok Barat. Dari tiap lokasi dipilih dua petak seluas 1 –2 ha sebagai petak pengamatan, kemudian dari masing-masing petak ditentukan sebanyak 15 tanaman sebagai tanaman contoh yang diambil sebelum pembungaan hingga musim buah habis.

Parameter pengamatan meliputi (a) banyaknya pucuk per tanaman, (b) pucuk terserang Helopeltis spp., (c) pucuk terserang S. indecora, (d) populasi Helopeltis spp., (e) populasi S. indecora per tanaman, (f) populasi semut per tanaman, (g) keberadaan nектar dan (h) keadaan lingkungan (suhu, curah hujan, kelembaban, serangga lainnya dan inang alternatif).

Penelitian semi lapang dilakukan pada tempat yang sama, namun yang dikendalikan hanya satu faktor yaitu populasi semut. Perluak yang dicobaakan adalah tiga tingkat populasi semut yaitu 0 koloni per 5 tanaman, 5 koloni per 5 tanaman dan 10 koloni per 5 tanaman. Penentuan jumlah koloni didasarkan pada pengamatan di lapang sebelumnya bahwa umumnya ditemukan 0, 1 atau 2 per tanaman. Agar populasi semut dari tanaman dapat pindah ke tanaman lain dalam satu tingkat populasi perlakuan, tujuk yang satu dihubungkan dengan tujuk yang lain melalui seutas tali sesuai dengan metode PENG et al. (1999a). Bagian bawah batang tanaman diolesi dengan ter agar semut tidak pindah dari tujuk ke tujuk tanaman lain melalui tanah. Pengamatan dilakukan seminggu sekali meliputi populasi Helopeltis spp. per tanaman, S. indecora per tanaman, aktivitas semut, pucuk dan karangan bunga terserang. Selain itu juga dilakukan pemamasan Melase trap untuk melihat kelimpahan populasi serangga lainnya pada pertanaman jambu mete, kemudian didentifikasi di laboratorium. Jenis trap ini terdiri dari tabang dibandingkan trap lainnya dalam penangkapan serangga. Uji non parametrik Khi-kuadrat (χ²) digunakan untuk membedakan populasi dan serangga Helopeltis antar perlakuan.

Penelitian rumah kaca/pot dilaksanakan di Kayangan untuk menunjang penelitian semi lapang. Pada penelitian ini ada 3 faktor yang dikendalikan/diperlakukan yaitu populasi semut (0 dan 5 per pucuk), populasi Helopeltis spp. (0, 1, 2, dan 3 per pucuk) dan populasi S. indecora (0, 10 dan 20 per pucuk). Kombinasi dari taraf yang dicobaakan merupakan perlakuan. Satu perlakuan merupakan satu pucuk yang disangkap dengan kantung plastik dan ke...

HASIL DAN PEMBAHASAN

Penelitian Lapang

Fenomena ini menunjukkan bahwa keberadaan nektar pada tanaman ada hubungannya dengan kadar air dalam jaringan tanaman. Tanaman segar mengeluarkan nektar, yang kemudian *S. indecora* memburuknya dari hasil tuskannya pada jaringan. Ketika keadaan lingkungan sangat kering, kadar air jaringan tanaman hanya cukup untuk makanan *S. indecora*.

Proporsi antara semut rangrang (*O. smaragdina*) dan semut hitam (*Dolichoderus sp.*) pada pertanaman terlihat pada Tabel 1, terlihat bahwa proporsi semut hitam sangat sedikit dan tampaknya dipengaruhi oleh kelembaban dan curah hujan. Ketika hujan masih ada pada bulan Juli dan Agustus 2003, proporsi semut hitam mencapai 26 - 30%.

Populasi *Helopeltis* spp. di Sambik Rindang dari bulan Juni sampai dengan Oktober 2003 sangat rendah hanya berkisar antara 0 dan 3 imago per 15 tanaman, karena kelembaban rendah dan hujan turun hanya satu hari selama...
Tabel 1. Proporsi semut rangrang dan semut hitam bulan Juni sampai dengan November 2003 (%)

<table>
<thead>
<tr>
<th>Bulan</th>
<th>Proporsi Semut Rangrang</th>
<th>Proporsi Semut Hitam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juni</td>
<td>91</td>
<td>9</td>
</tr>
<tr>
<td>Juli</td>
<td>74</td>
<td>26</td>
</tr>
<tr>
<td>Agustus</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>September</td>
<td>93</td>
<td>7</td>
</tr>
<tr>
<td>Oktober</td>
<td>84</td>
<td>16</td>
</tr>
<tr>
<td>November</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Keterangan: * Populasi semut sedikit sekali hanya ditemukan 17 per 30 tanaman.
Notes: * Very small population of ants were found, only 17 per 30 plants.

Penelitian Semi Lapang

Penelitian semi lapang ini ditujukan untuk menunjukkan penelitian lapang, karena ada satu faktor lingkungan yang digunakan sebagai perluas perambatan yaitu semut predator dan penekanannya pada perambatan semut tersebut untuk mengurangi kerusakan oleh Helopeltis spp.

Umumnya kerusakan pucuk oleh Helopeltis spp. pada pucuk yang tidak diberi perlakuan semut, lebih berat dibandingkan dengan kerusakan pada pucuk yang diinvestasikan oleh semut 5 koloni dan 10 koloni per lima tanaman. Di Sambik Rindang, populasi S. indecera tetap bertambah sampai bulan September seperti penelitian lapang, namun keberadaan S. indecera pada perlakuan semut 10 koloni per lima tanaman paling tinggi dibandingkan dua perlakuan lainnya. Bila dilihat keberadaan nektar, seperti yang diperoleh pada penelitian lapang, banyaknya nektar berkorelasi dengan populasi S. indecera yang ditemukan. Maka banyak populasi S. indecera maka banyak nektar yang ditemukan (Tabel 2).

Pada Tabel 2 terlihat bahwa walaupun populasi Helopeltis spp. terus menurun dan kelihatan tidak jelas perbedaannya antara petak kontrol dan petak yang diberi perlakuan, namun semangkannya tetap bertambah sampai bulan September. Hal ini dimungkinkan adanya inang pengganti bagi serangga tersebut yaitu gula dan rumput-rumputan sebagai tempat berteduh. Walaupun demikian kerusakannya pada petak yang diberi perlakuan semut lebih sedikit dibandingkan dengan petak tanpa perlakuan semut, artinya semut berperan dalam pengendalian hama tersebut. Perbedaan serangga antar petak ditunjukkan oleh χ² pada bulan Juli, Agustus dan September yaitu 5,61, 1,26, dan 5,00 walaupun dengan taraf nyata 10%. Seperti pada...
pengamatan penelitian lapang, nektar banyak ditemukan pada populasi *S. indecora* yang sangat tinggi. Kelihatanannya semut tidak menganggu populasi *S. indecora*, begitu pula sebaliknya karena sifat nimfa *S. indecora* yang sangat pasif. Berdasarkan pengamatan langsung pada pertanaman, sering terlihat bahwa semut sangat aktif dalam memangsa *Helopeltis* spp., apabila tidak ada makanan lain, maka semut mulai memangsa nimfa *S. indecora* yang masih sangat muda. Itulah sebabnya pada perlakuan 5 koloni semut/5 tanaman, populasi *S. indecora* paling sedikit karena proporsi nimfa lebih banyak daripada imago. Fenomena pemangsa nimfa ini baru diketahui, sedangkan peranan semut dalam pengendalian telur hama lain telah banyak diselidiki di luar negeri yaitu pada kelapa, kelapa sawit, kakao, kopi, dan tanaman kehutanan (WAY and KHO, 1992), serta *Helopeltis* spp. pada tanaman jambu mete (FENG et al., 1999).

Di Sambik lengk, peranan semut dalam mengurangi kerusakan pucuk lebih terlihat karena populasi *Helopeltis* lebih dominan (Tabel 3). Taraf nyata yang dihasilkan karena perbedaan kerusakan pucuk lebih kecil yaitu 1% dan 5% pada bulan Juli dan Agustus dengan nilai $\chi^2 = 565$ dan $\chi^2 = 11.61$. Pucuk yang kering dan mati banyak ditemukan pada petak yang tidak diinvasi oleh semut.

Penelitian Rumah Kaca

Penelitian ini dilaksanakan untuk mendukung penelitian lapang dan demi supaya melihat perilaku dari masing-masing serangga dan pengaruhnya terhadap kerusakan pucuk. Hasilnya diuraikan pada Tabel 4, karena datanya bersifat kualitatif.

Tabel 3. Peranan semut dalam pengendalian *Helopeltis* spp.

*Table 3. The role of ants in controlling *Helopeltis* spp.*

<table>
<thead>
<tr>
<th>Populasi Semut</th>
<th>July</th>
<th>Agustus</th>
<th>September</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antr population</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(koloni/5 tanaman)</td>
<td>(koloni/5 plants)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>PH</td>
<td>S</td>
<td>H</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>100</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>9.6</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>4.0</td>
<td>24</td>
</tr>
</tbody>
</table>

Keterangan : H = populasi *Helopeltis* spp per lima tanaman *Helopeltis* population per 5 plants
*Note : PH = persentase pucuk terserang *Helopeltis* spp. Percentage of shoot damage
S = populasi *S. indecora* per lima tanaman *S. indecora* population per 5 plants*

<table>
<thead>
<tr>
<th>Perlakuan Treatment</th>
<th>Perkembangan serangan dan kerusakan pucuk Insect population and damaged shoots development</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kontrol (tanda serangan)</td>
<td>1. Pucuk tetap sehat dan menghasilkan</td>
</tr>
</tbody>
</table>
Hasil penelitian menunjukkan bahwa kehadiran semut di pertanaman mete perlu diusahakan agar selalu ada. Mengingat kehadiran semut pada tanaman tertaksir oleh nektar, baik yang dikeluarkan oleh jaringan tanaman maupun oleh *S. indecora*, maka kelembaban dalam iklim mikro tanaman harus cukup tinggi. Selama ada tanaman inang lain untuk *S. Indecora*, maka populasi *S. indecora* akan selalu ada di sekitar pertanaman jambu mete. Populasi semut yang sudah ada di pertanaman dapat dikonservasi sesuai metode Peng et al. (1999a).

KESIMPULAN

Berdasarkan pengamatan yang telah dilaksanakan selama enam bulan di Lombok Barat, Nusa Tenggara Barat, adalah sebagai berikut: semut baik semut rangrang maupun semut hitam berperan penting dalam mengurangi kerusakan pucuk oleh *Helopeltis* spp.

DAFTAR PUSTAKA

ANONYMOUS. 1979. Cashew (*Anacardium occidentale* L.)

<table>
<thead>
<tr>
<th>No</th>
<th>Nama</th>
<th>Ordo</th>
<th>Famili</th>
<th>Jumlah</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lycasemthes emilus javana</td>
<td>Lepidoptera</td>
<td>Lycaenidae</td>
<td>56</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Dolichoderus sp.</td>
<td>Hymenoptera</td>
<td>Formicidae</td>
<td>531</td>
<td>Musuh alami</td>
</tr>
<tr>
<td>3</td>
<td>Laba-laba</td>
<td>Neuroptera</td>
<td>Arachnidae</td>
<td>10</td>
<td>Musuh alami</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>Neuroptera</td>
<td>Formicidae</td>
<td>5</td>
<td>Musuh alami</td>
</tr>
<tr>
<td>5</td>
<td>Musor sp.</td>
<td>Diptera</td>
<td>Muscidae</td>
<td>41</td>
<td>Hama</td>
</tr>
<tr>
<td>6</td>
<td>Coccinella sp.</td>
<td>Coleoptera</td>
<td>Coccinellidae</td>
<td>4</td>
<td>Musuh alami</td>
</tr>
<tr>
<td>7</td>
<td>Chrysopa sp.</td>
<td>Neuroptera</td>
<td>Chrysopidae</td>
<td>26</td>
<td>Musuh alami</td>
</tr>
<tr>
<td>8</td>
<td>Saranaus sp.</td>
<td>Neuroptera</td>
<td>Platidae</td>
<td>20</td>
<td>Hama</td>
</tr>
<tr>
<td>9</td>
<td>Omniaeus sp.</td>
<td>Neuroptera</td>
<td>Scarabaeidae</td>
<td>2</td>
<td>Musuh alami</td>
</tr>
<tr>
<td>10</td>
<td>Xiphidion longi</td>
<td>Orthoptera</td>
<td>Tettigoniidae</td>
<td>1</td>
<td>Musuh alami</td>
</tr>
<tr>
<td>11</td>
<td>Atractomorpha</td>
<td>Orthoptera</td>
<td>Acrididae</td>
<td>4</td>
<td>Hama</td>
</tr>
<tr>
<td>12</td>
<td>Caratina sp.</td>
<td>Neuroptera</td>
<td>Apidae</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Ceriana sp.</td>
<td>Neuroptera</td>
<td>Sphacidae</td>
<td>7</td>
<td>Musuh alami</td>
</tr>
<tr>
<td>14</td>
<td>Liris sp.</td>
<td>Neuroptera</td>
<td>Apidae</td>
<td>5</td>
<td>Musuh alami</td>
</tr>
<tr>
<td>15</td>
<td>Paracophotina sp.</td>
<td>Neuroptera</td>
<td>Bombilidae</td>
<td>30</td>
<td>Pencyrbuk</td>
</tr>
<tr>
<td>16</td>
<td>Heteropatella respondens</td>
<td>Neuroptera</td>
<td>Dragonidae</td>
<td>7</td>
<td>Musuh alami</td>
</tr>
<tr>
<td>17</td>
<td>Trilophidia sp.</td>
<td>Orthoptera</td>
<td>Acrididae</td>
<td>8</td>
<td>Hama</td>
</tr>
<tr>
<td>18</td>
<td>Homopterella leifjuswini</td>
<td>Neuroptera</td>
<td>Scolyidae</td>
<td>3</td>
<td>Hama</td>
</tr>
<tr>
<td>19</td>
<td>Sarcoptera</td>
<td>Diptera</td>
<td>Sarcophagidae</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>Empheoasca sp.</td>
<td>Hemiptera</td>
<td>-</td>
<td>81</td>
<td>Hama</td>
</tr>
<tr>
<td>21</td>
<td>Copturus sp.</td>
<td>Coleoptera</td>
<td>-</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>Blattella sp.</td>
<td>Orthoptera</td>
<td>Blattidae</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>Dacus sp.</td>
<td>Diptera</td>
<td>Pteriferidae</td>
<td>4</td>
<td>Hama</td>
</tr>
<tr>
<td>24</td>
<td>Prosera silvatrix</td>
<td>Diptera</td>
<td>Dixidae</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>-</td>
<td>Coleoptera</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>Phaenopterus</td>
<td>Diptera</td>
<td>Asilidae</td>
<td>1</td>
<td>Musuh alami</td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>Diptera</td>
<td>Formicidae</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>-</td>
<td>Tipulidae</td>
<td>14</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>-</td>
<td>Coleoptera</td>
<td>Buprestidae</td>
<td>2</td>
<td>Hama</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>Diptera</td>
<td>-</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>-</td>
<td>Coleoptera</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>32</td>
<td>-</td>
<td>Hemiptera</td>
<td>Spheridae</td>
<td>2</td>
<td>Musuh alami</td>
</tr>
<tr>
<td>33</td>
<td>-</td>
<td>Hemiptera</td>
<td>Apidae</td>
<td>1</td>
<td>Pencyrbuk</td>
</tr>
<tr>
<td>34</td>
<td>-</td>
<td>Coleoptera</td>
<td>-</td>
<td>27</td>
<td>-</td>
</tr>
<tr>
<td>35</td>
<td>-</td>
<td>Coleoptera</td>
<td>Eavaidae</td>
<td>1</td>
<td>Musuh alami</td>
</tr>
<tr>
<td>36</td>
<td>-</td>
<td>Hemiptera</td>
<td>Scarabaeidae</td>
<td>1</td>
<td>Hama</td>
</tr>
</tbody>
</table>