KEMAJUAN GENETIK PADA DUA VARIETAS BARU KAPAS, KANESIA 8 DAN KANESIA 9

HASNAM1, EMY SULISTYOWATTI2, SWI SUMARTINI2, FITRININGDYAH TRI KADARWATTI3 dan PRIMA D. RIAJAYA3

1) Pusat Penelitian dan Pengembangan Perkebunan
2) Balai Penelitian Tanaman Tembikai dan Serat

RINGKASAN

Tujuan utama pemuliaan kapas di Indonesia adalah meningkatkan produktivitas dan kualitas serat dalam upaya meningkatkan pendapatan petani dan memperbaiki mutu benang tenun serta kualitas tekstil yang harus bersaing di pasar internasional. Sejumlah enam persilangan telah dilakukan antara dua varietas dari India, L.RA 5166 dan SRT-1 dengan dua varietas dari Amerika Serikat, Deltapine 55 dan Deltapine Acala 90 dan satu varietas dari Australia, Sirol. Seleksi individu, seleksi galur dan seleksi individu dalam galer dilaksanakan pada generasi F2 sampai F5 berdasarkan jumlah benang, tingkat kerusakan daun, terhadap beberapa penyakit, dan mutu serat; serta proses pematangan pada kondisi alam. Hasil penelitian ini menunjukkan bahwa varietas Kanesia 8 dan Kanesia 9 pada bulan Juni 2003, menunjukkan produktivitas dan kualitas serat yang lebih tinggi. Rata-rata, kedua varietas menghasilkan 1.85 ton dan 1.91 ton kapas per hektar pada kondisi alam. Kanesia 8 dan Kanesia 9 secara umum menunjukkan peningkatan ketahanan terhadap penyakit seperti, Ars. Alternata, and Bacterial leaf spot. Kanesia 8 dan Kanesia 9 juga menunjukkan trend yang lebih baik terhadap serangga seperti Kurcul integralis. Pada varietas Kanesia 8, serat berkualitas lebih baik dengan panjang serat sebesar 22.6-24.7 gram tex1 serat lebih panjang dan berkisar 29.3-30.3 mm sedangkan angka mikron lebih rendah yang menyatakan bahwa serat lebih halus. Varietas Kanesia 8 dan Kanesia 9 menunjukkan kinerja kompetitif dalam peningkatan tenun dengan kepadatan 80-120 per cm2. Pada peningkatan tenun, Kanesia 8 dan Kanesia 9 menunjukkan kinerja kompetitif dengan kepadatan 80-120 per cm2. Kanesia 8 dan Kanesia 9 mempunyai peluang untuk diadopsi oleh petani di perkebunan serat.

Kata kunci: Gossypium hirsutum, prosedur pemuliaan, produktivitas, kualitas serat, Sundantheryx bigutials, pemulian

ABSTRACT

Genetic improvement on two new cotton varieties, Kanesia 8 and Kanesia 9

The main objective of cotton breeding in Indonesia is to improve productivity and fiber quality which is aimed to increase farmers' income and make the country self-sufficient in raw cotton and textile quality that has to compete in international market. Six crosses were made between two Indian varieties, L.RA 5166 and SRT-1 with two USA varieties, Deltapine 55 and Deltapine Acala 90 and one Australian variety, Sirol. Individual plants, lines, and individual within lines were selected on F2-F5 generations based on boll-completeness, leaf-damage by jasids and fiber traits; those were conducted under rainfed and insecticide-free condition; twelve promising lines were produced from this process. A total of 13 trials were carried out to observe performance of these new lines during 1993 to 2001; those were located in East Java and South Sulawesi using the standardized experimental techniques. These procedures make it possible to identify several breeding lines showing simultaneous improvement in yield and fiber quality. Several tests were also made to evaluate response of those lines under intercropping with soybean and mungbean, which were located in East Java. Two breeding lines, 88003/16/2 and 92016/6 (those have been released as Kanesia 8 and Kanesia 9 in 2003), showed higher productivity and fiber quality. In average, these new varieties produced 1.85 and 1.91 ton ha¹ seed cotton respectively or 8 to 12% higher than those on Kanesia 7, the previously released variety. lint turn-out was 35.2%, fiber-strength was varied from 22.6 to 24.7 gram tex1, fiber lengths ranged from 29.2 to 30.3 mm with lower micronaire-values indicating better fiber-finessness. All of those improvements represented a trend toward a higher quality fiber. Kanesia 8 and Kanesia 9 also showed a slight improvement in resistance to jasids and insect pest-complex. Kanesia 8 and Kanesia 9 performed lower competitive ability under intercropping with soybean in comparison with Kanesia 7. Under intercropping with mungbean Kanesia 8 also suffered high yield loss, wherein Kanesia 9 showed good tolerance to mungbean. The release of Kanesia 8 and Kanesia 9 is expected to give a broader choice for the cotton growers and spinning-mills to match with their final product.

Keywords: Cotton (Gossypium hirsutum), breeding procedure, productivity, fiber quality, Sundantheryx bigutials, intercropping.

PENUTUPAN

Pemuliaan kapas diprioritaskan pada upaya untuk meningkatkan produktivitas dan mutu serat; dengan prioritas tersebut diharapkan usahatani kapas mampu bersaing dengan usahatani komoditi lain dan peningkatan mutu serat akan meningkatkan daya saing benang tenun dan tekstil Indonesia di pasar internasional. Perbaikan hasil kapas telah diuji dengan meningkatkan ketahanan serangga kapas di lahan tanah hujan serta ketahanan terhadap hama, sedangkan penelitian mutu serat difokuskan pada peningkatan kekuatan serat, agar sesuai dengan mesin pembuat lembaran kering.

Dari kegiatan pemuliaan kapas selama 20 tahun terakhir, telah dihasilkan varietas-varietas Kanesia 1 sampai Kanesia 7. Sebelum tahun 1990, tingkat produktivitas varietas-varietas introduksi seperti Reba BTK-12, TAMCOT SP-37, Deltapine 55, Tak Fa 1 berkisar 0.8-1.1 ton kapas per hektar, dengan dilepasnya Kanesia 1 - Kanesia 6 produktivitas meningkat menjadi 1.3-1.4 ton, kemudian pada tahun 1998 dilepas Kanesia 7 dengan produktivitas 1.5-1.7 ton per hektar (HASNAM et al., 1994; 1998). Varietas Kanesia 7 mempunyai daya adaptasi luas dan sudah digunakan dalam program pengembangan kapas di Jawa Tengah, Jawa Timur, Nusa Tenggara Barat, dan Sulawesi Selatan.
Laju peningkatan hasil kapas yang ditemukan diatas berkisar 10-15% per siklus seleksi; jika dinyatakan dengan angka, kemajuan seleksi sebesar 600 kg kapas berbiji dalam 20 tahun atau 10.5 kg serat/tahun. Kecilnya peningkatan terutama disebabkan oleh tingginya interupsi terhadap fotosintesis kapas di lahan tanah hujan. KRIEG (1997) mengemukakan bahwa 70% dari variasi hasil kapas disebabkan oleh faktor lingkungan; dari sekian banyak faktor lingkungan, ketidaktersediaan air adalah pembatas utama bagi kapas untuk mencapai potensi genetik hasil. Hasil yang serupa juga dilaporkan oleh KERBY et al. (2000) yang menyatakan bahwa 90% dari variasi hasil disebabkan oleh faktor lokasi; demikian juga panjang serat (85%), angka mikroner (69%), dan kekuatan serat (48%). Kuatnya faktor lingkungan juga ditunjukkan oleh rendahnya heritabilitas seperti dilaporkan oleh MYERS dan BORDELOUS (1995) dengan angka-angka 0.14, 0.30, 0.34 dan 0.00 untuk hasil, panjang, kekuatan dan kehalusan serat. Jadi mahal dipahami lambatnya kemajuan dalam meningkatkan hasil dan mutu serat, karena pemulianan kapas di Indonesia diselenggarakan di daerah yang distribusi hujannya bersifat erratik.

Pada makalah ini akan dikemukakan kemajuan terakhir dalam pemulianan kapas dalam upaya meningkatkan produktivitas, mutu serat dan toleransi kapas dalam kompetisi dengan palawija. Telah diperoleh dua galur baru, yang telah dilepas sebagai varietas-varietas unggul baru dengan nama Kanesia 8 dan Kanesia 9 untuk dimanfaatkan dalam program pengembangan kapas di Indonesia.

BAHAN DAN METODE

Prosedur Pemuliaan

Populasi F$_1$ dan F$_2$ di tanam di Asembagus, Jawa Timur, pada lahan tanah hujan dengan pemeliharaan tanaman sesuai dengan standar budidaya kapas, tetapi tidak diproteksi terhadap hama. Dari enam kombinasi persilangan, hanya empat populasi F$_2$ yang dipertahankan, yaitu populasi-populasi yang memperlihatkan variasi ketahanan terhadap hama Sundaperyza biguttula dan variasi produktivitas individu tanaman; sejumlah 2000-3000 tanaman F$_2$ dipilih dari tiap populasi.

Penelitian Lapangan

Sejumlah 10-12 galur-galur baru dan empat varietas pembanding (Kanesia 7, SRT-1, LRA 5166 dan DPL Acala 90) disusun menurut rancangan kelompok, yang diulang lima kali pada petak-petak percobaan berukuran 10 x 5 m, jarak tanam 100 x 25 cm, 1 tanaman/lubang tanam, dosis pupuk 60 kg N, 36 kg P₂O₅ dan 50 kg K₂O per hektar, dimana pupuk fosfat, kalsium dan 20% N (berasal dari ZA) diberikan pada waktu tanam, sedangkan sisanya N dari urea diberikan pada umur 4-6 minggu. Sama dengan tanaman berumur enam minggu, dilakukan 2-3 kali penyiangan secara manual.

Pengujian tumpangsari kapas dengan kacang hijau atau kedelai dilakukan di Jawa Timur pada tahun 1997-2001. Galur-galur baru tersebut dan dua varietas pembanding disusun menurut rancangan kelompok yang diulang tiga kali, menggunakan petak-petak percobaan berukuran 10.5 x 5 m (kancangan 30 x 25 cm, 2 tanaman/lubang tanam, jarak tanam 150 x 30 cm, 2 tanaman/lubang tanam, jarak tanam 150 x 30 cm, 2 tanaman/lubang tanam). Tanaman kapas dipupuk dengan 60 kg N, 36 kg P₂O₅, 50 kg K₂O per hektar, sedangkan kedelai dipupuk dengan 20 kg N per saat tanam, kacang hijau tidak dipupuk. Pada setiap pengujian juga dilakukan petak-petak kapas pada kondisi monokultur. Angka banding hasil tiap galur yang ditumpangsari dengan kacang hijau atau kedelai dengan hasil tiap galur pada kondisi monokultur digunakan sebagai tingkat toleransi galur terhadap kompetisi kacang hijau atau kedelai. Penyiangan secara manual dilakukan tiga kali, pengendalian hama dilakukan jika populasi H. armigera melewat ambang kendali.

Pada penelitian-penelitian di atas dilakukan pengumpulan data hasil dan komponen hasil, mutu serat, ketahanan terhadap komplex hama dan tingkat toleransi kapas dalam berkompetisi dengan palawija. Selain itu juga dilakukan pengamatan laju fotosintesa, transpirasi, efisiensi fotosintesa serta daya hantam stomata dengan menggunakan alat Portable Photosynthesis pada umur 75 hari, saat perkembangan kanopi tanaman mencapai maksimum.

Pengujian Laboratorium

Pengujian mutu serat dari individu-individu terpilih dilakukan di laboratorium pasca panen Balitgas, sedangkan pengujian mutu serat galur-galur harapan dari beberapa uji multilokasi dilakukan di Balai Besar Penelitian dan Pengembangan Industri Tekstil di Bandung. Contoh serat mengalami "Conditioning" selama dua hari pada suhu 22-24°C, kemudian 70% dan intensitas peninjauan 60 fc, parameter yang diantri terutama panjang, kekuatan, kehalusan dan keseragaman serat.

HASIL DAN PEMBAHASAN

Hasil uji multilokasi dikemukakan pada Tabel 1; data yang disajikan sudah disederhanakan dimana dikemukakan hanya data dari dua galur unggul yaitu 88003/162/2 yang berasal dari persilangan DPL Acala 90 x LRA 5166 dan diberi nama Kanesia 8 serta 92016/6 yang berasal dari persilangan DPL Acala 90 x SRT-1, dan diberi nama Kanesia 9. Keduanya dibandingkan dengan Kanesia 7 dan tetu-tetu kedua varietas tersebut. Kedua varietas menunjukkan daya adaptasi yang lebih tinggi dibandingkan dengan tetu-tetuanya jika dilihat dari peningkatan produktivitas sebesar 24-27% (dibandingkan dengan SRT-1 atau LRA 5166) atau peningkatan 8-12% jika dibandingkan dengan Kanesia 7.

Rata-rata hasil kapas berbiji dari kedua varietas baru lebih tinggi dari hasil Kanesia 7 yang dilepas tahun 1998 yang lalu. Hasil Kanesia 8 lebih tinggi dari hasil Kanesia 7 pada 7 dari 11 kali pengujian, walaupun hanya dua kali menunjukkan perbedaan yang nyata. Hasil Kanesia 9 lebih tinggi dari hasil Kanesia 7 pada 6 dari 10 kali pengujian, dimana perbedaan nyata hanya ditemukan dalam pengujian di Pasirian 1997 dan Wongsoerejo 1999. Rata-rata hasil yang dicapai oleh masing-masing varietas adalah 1.85 dan 1.91 ton per hektar dibandingkan dengan hasil Kanesia 7 sebesar 1.70 ton per hektar; hasil tertinggi yang bisa dicapai oleh Kanesia 8 dan Kanesia 9 masing-masing 2.54 dan 2.73 ton per hektar di Jenepepo tahun 2000, peluang kedua varietas untuk mencapai hasil diatas 2 ton adalah 3-4 kali dari 10-11 kali penanaman.

Peningkatan hasil tersebut, terutama disebabkan oleh bertambahnya jumlah buah per tanaman (Tabel 2) dan semakin beratnya buah (Tabel 3). Komponen hasil yang ketiga yaitu kandungan serat kedua varietas baru juga mengalami
Tabel 1. Hasil kapan berbiji Kanesia 8 dan Kanesia 9

<table>
<thead>
<tr>
<th>Varietas baru dan pembanding</th>
<th>Lokasi dan tahun tanam (dalam kg ha⁻¹)</th>
<th>Locations and planting year (in kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----------------------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Kanesia 8</td>
<td>1060 a</td>
<td>1739 abc</td>
</tr>
<tr>
<td>Kanesia 9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kanesia 7</td>
<td>952 a-f</td>
<td>1973 a</td>
</tr>
<tr>
<td>SRT-1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LRA 5166</td>
<td>1111 abc</td>
<td>1422 b-h</td>
</tr>
<tr>
<td>DPL Acania 90</td>
<td>320 ij</td>
<td>374 j</td>
</tr>
</tbody>
</table>

KK CV(%) 22.4 18.4 6.8 19.9 28.6 23.5 12.3 25.2 20.7 17.0 17.8 16.9 16.6

Keterangan: Angka yang diikuti oleh huruf yang sama pada setiap kolom tidak berbeda nyata pada taraf 5%

Note: Numbers followed by the same letter in each column are not significantly different at 5% level

Tabel 2. Jumlah buah per tanaman Kanesia 8 dan Kanesia 9

<table>
<thead>
<tr>
<th>Varietas baru dan pembanding</th>
<th>Lokasi dan tahun</th>
<th>Locations and planting years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pasirian 97</td>
<td>Pasirian 99</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Kanesia 8</td>
<td>14.5 ab</td>
<td>6.3 de</td>
</tr>
<tr>
<td>Kanesia 9</td>
<td>10.8 a-f</td>
<td>10.1 a</td>
</tr>
<tr>
<td>Kanesia 7</td>
<td>10.4 a-f</td>
<td>12.4 bc</td>
</tr>
<tr>
<td>SRT-1</td>
<td>15.1 ab</td>
<td>6.8 cde</td>
</tr>
<tr>
<td>LRA 5166</td>
<td>9.2 a-g</td>
<td>9.2</td>
</tr>
</tbody>
</table>

KK CV(%) 25.3 16.5 9.2 21.7 10.2 14.4

Keterangan: Angka yang diikuti oleh huruf yang sama pada setiap kolom tidak berbeda nyata pada taraf 5%

Note: Numbers followed by the same letter in each column are not significantly different at 5% level

Tabel 3. Berat 100 buah varietas Kanesia 8 dan Kanesia 9

<table>
<thead>
<tr>
<th>Varietas baru dan pembanding</th>
<th>Lokasi dan tahun</th>
<th>Locations and planting years in gram</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pasirian 97</td>
<td>Pasirian 99</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Kanesia 8</td>
<td>450 cd</td>
<td>446 bc</td>
</tr>
<tr>
<td>Kanesia 9</td>
<td>459 e</td>
<td>451 bc</td>
</tr>
<tr>
<td>Kanesia 7</td>
<td>457 b-j</td>
<td>425 c</td>
</tr>
<tr>
<td>SRT-1</td>
<td>422 de</td>
<td>407 c</td>
</tr>
<tr>
<td>LRA 5166</td>
<td>383 Jk</td>
<td>383</td>
</tr>
</tbody>
</table>

KK CV(%) 9.1 4.8 4.9 7.4 5.6 4.5

Keterangan: Angka yang diikuti oleh huruf yang sama pada setiap kolom tidak berbeda nyata pada taraf 5%

Note: Numbers followed by the same letter in each column are not significantly different at 5% level

Kemajuan yang berarti dicapai pada peningkatan mutu serat (Tabel 6). Kanasia 8 menunjukkan panjang serat 30.3 mm, kekuatan serat 24.7 gr tex⁻¹, kehalusan serat 3.9 mikron dengan karetan serat 84%, sedangkan Kanasia 9 menunjukkan panjang serat 29.2 mm, kekuatan serat 22.6 gr tex⁻¹, kehalusan serat 4.7 mikron dengan karetan serat 83%. Pertambahannya kekuatan serat sebesar 1.2-3.3 gr tex⁻¹ akan meningkatkan efisiensi pemintalan benang tenun dan bertambah halusnya serat memungkinkan dihasilkannya benang tenun yang lebih halus. Meningkatnya mutu benang tenun akan meningkatkan mutu tekstil yang dihasilkan. Perbaikan mutu serat dengan penggunaan varietas unggul baru ini dapat dijadikan dasar untuk meningkatkan harga pembelian kapas dari petani, sedangkan peningkatan mutu tekstil berarti peningkatan daya saing tekstil Indonesia di pasar internasional.

Varietas-varietas baru tersebut menunjukkan respon yang berbeda pada tumpangsari dengan kacang hijau atau kedelai (Tabel 9). Kanasia 9 lebih toleran dalam kompetisi dengan kacang hijau dengan kehilangan hasil 6.2%, sama dengan kehilangan hasil Kanasia 7. Sebaliknya Kanasia 8 lebih rentan dengan kehilangan hasil 36.8%. Jadi Kanasia 9 dan Kanasia 7 lebih sesuai untuk daerah pengembangan kapas dimana kapas ditumpangsarikan dengan kacang hijau.

KESIMPULAN

Tabel 4. Kandungan serat Kanesia 8 dan Kanesia 9

<table>
<thead>
<tr>
<th>Varietas berbda</th>
<th>Lokasi dan tahun tanam</th>
<th>Location and planting years, in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanesia 8</td>
<td>-</td>
<td>33.3</td>
</tr>
<tr>
<td>Kanesia 9</td>
<td>36.3</td>
<td>34.3</td>
</tr>
<tr>
<td>Kanesia 7</td>
<td>34.4</td>
<td>32.7</td>
</tr>
<tr>
<td>SRT-1</td>
<td>37.6</td>
<td>34.6</td>
</tr>
</tbody>
</table>

Tabel 5. Efisiensi fotosintesis Kanesia 8 dan Kanesia 9

<table>
<thead>
<tr>
<th>Varietas baru dan pembanding</th>
<th>Laju Fotosintesis dalam mg CO₂ m⁻² S⁻¹</th>
<th>Photosynthetic rate in mg CO₂ m⁻² S⁻¹</th>
<th>Laju Transpirasi dalam mg H₂O m⁻² S⁻¹</th>
<th>Transpiration rate in mg H₂O m⁻² S⁻¹</th>
<th>Efisiensi Fotosintesis dalam mg CO₂/ mg H₂O</th>
<th>Photosynthetic efficiency in mg CO₂/ mg H₂O</th>
<th>Daya hantar stomata Mol m⁻² S⁻¹</th>
<th>Stomatal conductance in Mol m⁻² S⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanesia 9</td>
<td>4.462 x 10⁻²</td>
<td>78.55</td>
<td>5.6 x 10⁻⁴</td>
<td>10.0 x 10⁻⁴</td>
<td>0.22</td>
<td>0.23</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Kanesia 8</td>
<td>7.250 x 10⁻²</td>
<td>72.56</td>
<td>10.0 x 10⁻⁴</td>
<td>7.8 x 10⁻⁴</td>
<td>0.23</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanesia 7</td>
<td>4.480 x 10⁻²</td>
<td>61.13</td>
<td>7.8 x 10⁻⁴</td>
<td>10.0 x 10⁻⁴</td>
<td>0.20</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 6. Mutu serat dari Kanesia 8 dan Kanesia 9

<table>
<thead>
<tr>
<th>Varietas baru dan pembanding</th>
<th>Panjang serat (mm)</th>
<th>Kekastangan serat (g. ten⁻¹)</th>
<th>Kerasatan serat (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanesia 8</td>
<td>29.2</td>
<td>30.5</td>
<td>31.2</td>
</tr>
<tr>
<td>Kanesia 9</td>
<td>59.0</td>
<td>29.2</td>
<td>29.2</td>
</tr>
<tr>
<td>Kanesia 7</td>
<td>59.0</td>
<td>28.7</td>
<td>28.7</td>
</tr>
<tr>
<td>SRT-1</td>
<td>27.7</td>
<td>-</td>
<td>28.7</td>
</tr>
</tbody>
</table>

Tabel 7. Skor kerusakan daun pada umur 70 hari setelah serangan S. biguttalu

<table>
<thead>
<tr>
<th>Varieties in bold and used in planting</th>
<th>Jumlah buku per 25 mm² Trichomes per 25 mm²</th>
<th>Wongsorejo 99</th>
<th>Pasirian 99</th>
<th>Jenepono 99</th>
<th>Bantaeng 99</th>
<th>Mojosari 2000</th>
<th>Mojosari 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanesia 8</td>
<td>97.2</td>
<td>2.53</td>
<td>2.50</td>
<td>2.00</td>
<td>1.66</td>
<td>2.00</td>
<td>1.8</td>
</tr>
<tr>
<td>Kanesia 9</td>
<td>97.9</td>
<td>2.40</td>
<td>2.28</td>
<td>2.00</td>
<td>2.66</td>
<td>2.16</td>
<td>1.6</td>
</tr>
<tr>
<td>Kanesia 7</td>
<td>125.8</td>
<td>2.83</td>
<td>3.08</td>
<td>2.33</td>
<td>2.00</td>
<td>2.56</td>
<td>2.0</td>
</tr>
<tr>
<td>SRT-1</td>
<td>187.8</td>
<td>1.56</td>
<td>1.08</td>
<td>1.33</td>
<td>1.33</td>
<td>-</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Keterangan: Arti skor: < 0.5 = tidak ada gejala; 0.6 - 1.4 = rusak ringan; 1.5 - 2.4 = rusak sedang; 3.5 - 4.0 = rusak berat

Note: Score means: less than 0.5 = no symptoms; 0.6 - 1.4 = slightly narrowing of leaf margin and leaf slightly curling; 1.5 - 2.4 = yellowing of leaf margin and leaf slightly curling; 2.5 - 4.0 = leaf turn to brownish, then shedding
Tabel 8. Ketahanan lapang Kanesia 8 dan Kanesia 9 terhadap komplek hama

<table>
<thead>
<tr>
<th>Galur dan varietas pembanding</th>
<th>Lokasi dan tahun</th>
<th>Lokcitions and planting years, in %</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanesia 8</td>
<td>-</td>
<td>-</td>
<td>58.4</td>
</tr>
<tr>
<td>Kanesia 9</td>
<td>79.4</td>
<td>-</td>
<td>26.3</td>
</tr>
<tr>
<td>Kanesia 7</td>
<td>93.0</td>
<td>37.5</td>
<td>81.1</td>
</tr>
<tr>
<td>SRT-1</td>
<td>-</td>
<td>52.2</td>
<td>71.4</td>
</tr>
</tbody>
</table>

Tabel 9. Hasil Kanesia 8 dan Kanesia 9 pada tumpang sari dengan kacang hijau dan kedelai

<table>
<thead>
<tr>
<th>Varietas baru dan pembanding</th>
<th>Tumpangsari dengan kacang hijau, dalam kg ha(^{-1})</th>
<th>Tumpangsari dengan kedelai, dalam kg ha(^{-1})</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intercropping with mungbean, in kg ha(^{-1})</td>
<td>Intercropping with soybean, in kg ha(^{-1})</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>Pasirian 97</td>
<td>Wongsoerojo 98</td>
<td>Rata-rata</td>
</tr>
<tr>
<td>Kanesia 8</td>
<td>-</td>
<td>1422 a-d (63.2)</td>
<td>1422 (63.2)</td>
</tr>
<tr>
<td>Kanesia 9</td>
<td>1875 a</td>
<td>1928 (93.8)</td>
<td>1928 (93.8)</td>
</tr>
<tr>
<td>Kanesia 7</td>
<td>2251 a</td>
<td>1932 bc (80.6)</td>
<td>1932 bc (80.6)</td>
</tr>
<tr>
<td>SRT-1</td>
<td>1826 bc</td>
<td>1431 abc (77.3)</td>
<td>1628 (70.1)</td>
</tr>
<tr>
<td>KK CV(%)</td>
<td>16.6</td>
<td>23.6</td>
<td>-</td>
</tr>
</tbody>
</table>

Keterangan : Angka dalam kurung adalah angka banding hasil kapas pada tumpangsari dengan hasil kapas pada monokultur, digunakan untuk mengukur tingkat toleransi varietas kapas terhadap kompetisi dengan kacang hijau atau kedelai

Note : Numbers in brackets were percentage of seed cotton yield under intercropping with mungbean or soybean in comparison with monocropping.
DAFTAR PUSTAKA

